Relative allocation to female and male function in hermaphroditic species often departs from strict equisexuality. Increased femaleness with plant size in animal-pollinated species has been proposed in theory and demonstrated in empirical studies. However, such size-dependent sex allocation (SDS) has not been observed in some insect-pollinated species, throwing doubt on the generalization of SDS, that large plants have decelerated male function investment. Himalayan mayapple Podophyllum hexandrum (Berberidaceae) produces a single terminal flower and no nectar, providing a simple system for studying SDS without the confounding effects of flower number and nectar production. To investigate the SDS in P. hexandrum, plant size, biomass of floral organs (stamens, pistils and petals) and gamete production (pollen and ovule number) were measured in four populations in Yunnan Province, northwest China. Isometric allocation to female and male function with plant size was found in two populations, but the prediction of SDS was supported in the other two populations. Using pollen and ovule production as the allocation currency, allocation to female and male function was isometric in all studied populations. Resources allocated to attractive (petals) and sexual (pistils and stamens) structures did not show a significantly disproportionate increase with plant size in three of the four studied populations. The general pattern of isometric allocation to female and male function and to attractive and sexual structures could be attributed to the species being capable of automatic self-pollination, related to low pollen loss, minor deleterious effect of selfing and low importance of attractive structures. However, in further studies, careful consideration should be given to the different currencies used to estimate sex allocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708094 | PMC |
http://dx.doi.org/10.1093/aobpla/plv139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!