Chloride regulates leaf cell size and water relations in tobacco plants.

J Exp Bot

Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012-Sevilla, Spain

Published: February 2016

Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737079PMC
http://dx.doi.org/10.1093/jxb/erv502DOI Listing

Publication Analysis

Top Keywords

leaf cell
8
cell size
8
water relations
8
cl-
8
higher plants
8
water
6
chloride regulates
4
leaf
4
regulates leaf
4
size water
4

Similar Publications

MicroRNA analysis reveals two modules that antagonistically regulate xylem tracheary element development in Arabidopsis.

Plant Cell

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.

Tracheary elements (TEs) are vital in the transport of various substances and contribute to plant growth. The differentiation of TEs is complex and regulated by a variety of microRNAs (miRNAs). However, the dynamic changes in miRNAs during each stage of TE differentiation remain unclear, and the miRNA regulatory network is not yet complete.

View Article and Find Full Text PDF

Four Alkaloids from with Antitumor Activity via Disturbing Glutathione Homeostasis.

J Org Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.

Alstoschoquinolines A-D (-) representing three unprecedented scaffolds were isolated from the leaves of through direct separation by LC/MS detection. and consisted of a 5/6/5-coupled quinoline architecture containing six consecutive chiral carbons, while and possessed a bridged ring featuring 6/6/6/6 and 6/6/8/6 skeletons, respectively. They might be derived from the corynantheine-type indole alkaloid via sequential oxidation and rearrangement.

View Article and Find Full Text PDF

No winter halt in below-ground wood growth of four angiosperm deciduous tree species.

Nat Ecol Evol

January 2025

PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.

In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.

View Article and Find Full Text PDF

Objective:  Oral squamous cell carcinoma (OSCC) is the prevailing type of oral cancer, representing poor prognosis and elevated mortality rates. Major risk factors for OSCC include the use of tobacco products, alcohol consumption, betel quid chewing, and genetic mutation. is traditionally consumed by cancer patients to fight against tumor growth.

View Article and Find Full Text PDF

Physiological and transcriptome analysis of sex-specific responses to cadmium stress in poplars.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!