Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Current push-out experimental methods used in endodontic research should be improved. This study introduced a novel dentin push-out bond strength model that uses micro-computed tomography (μCT).
Methods: Roots filled with gutta-percha cones and different resin-based sealers (n = 10) were sectioned transversely to obtain two 2-mm-thick slices per root third. The first slice was subjected to a push-out test by using a material testing stage fitted inside a μCT scanner. The apparatus was scanned before and after the test to evaluate areas of filling material ruptures. The images provided by μCT were also used to generate models for a 3-dimensional finite element analysis. Confocal laser scanning microscopy was used to assess failure modes after the test and to measure interfacial gaps in slices not subjected to push-out. Bond-strength and gap data were statistically analyzed (P < .05).
Results: Proper coefficients of variation (average less than 30%) were observed for all the experimental conditions. The finite element analysis helped explain the results of bond strength and root-filling ruptures. A significant, moderate, indirect correlation was observed between the bond strength and gaps.
Conclusions: The micromechanical model with the μCT images resulted in a consistent root-filling bond strength evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2015.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!