Performing transesterifications in aqueous media is becoming a priority challenge in lipid biotechnology in order to develop more eco-friendly and efficient biocatalytic processes in systems containing both polar and apolar substrates. In this context, our group has explored for several years the high potential of the lipase/acyltransferase CpLIP2 from Candida parapsilosis and of several of its homologs, that catalyze efficiently acyltransfer reactions in lipid/water media with high water activity (aw>0.9). The discovery of a new member of this group, CduLAc from Candida dubliniensis, with a higher acyltransferase activity than CpLIP2, has provided a new insight on structure-function relationships in this group. Indeed, the comparison of sequences and 3D models, especially of CpLIP2 and CduLAc, with those of the phylogenetically related lipase A from Pseudozyma antarctica (CAL-A), allowed elucidating a key structural determinant of the acyltransferase activity: serine S369 in CpLIP2 and its equivalents E370 in CAL-A and A366 in CduLAc. Mutants obtained by rational design at this key position showed significant changes in acyltransfer activity. Whereas mutation S369E resulted in an increase in the hydrolytic activity of CpLIP2, S369A increased alcoholysis. More strikingly, the single E370A mutation in CAL-A drastically increased the acyltransferase activity of this enzyme, giving it the character of a lipase/acyltransferase. Indeed, this single mutation lowered the methanol concentration for which the initial rates of alcoholysis and hydrolysis are equal from 2M in CAL-A down to 0.3M in its mutant, while the exceptional stability of the parental enzyme toward alcohol and temperature was conserved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2015.11.006 | DOI Listing |
World J Gastroenterol
December 2024
Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China.
Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified.
Aim: To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD.
Physiol Plant
December 2024
Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain.
Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Introduction: Severe acute pancreatitis (SAP) is a crucial gastrointestinal disease characterized by systemic inflammatory responses and persistent multiple organ failure. The role of bile acids (BAs) in diverse inflammatory diseases is increasingly recognized as crucial, but the underlying role of BA conjugation remains elusive.
Objectives: Our study aim to investigate the potential role of conjugated bile acids in SAP and reveal the molecular mechanisms underlying its regulatory effects.
BMC Plant Biol
December 2024
Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
Background: Grape (Vitis vinifera L.) is one of the most important fruit products globally and has a high nutritional value with potent antioxidant and anti-cancer activities. In current years, phenylalanine application has been particularly noticed for enhancing the nutritional quality of horticultural crops.
View Article and Find Full Text PDFPharmacol Res
December 2024
School of Pharmacy, Macau University of Science and Technology, Macau, 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China. Electronic address:
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!