To investigate the characteristics of chemical constitute and pollution sources of aerosol fine particulate matter during haze-fog day in Beijing in winter 2013. The samples of PM2.5 were collected in Beijing from January to February, 2013. The technique of ICP-MS and ICP-AES coupled with procedure of bathing-ultrasonic extraction was applied to determine the concentration of 40 elements in the aerosol samples to analyze the characteristics of elements distribution statistically. The absolute principal factor method was used to apportion the pollution sources of PM2.5 during the haze weather in Beijing city in winter 2013. The results showed that during the period of sampling, the volume concentration of Li, Mn, Pb, S etc. obeyed normal distribution approximately, and according to National Ambient Air Quality Standard issued by Ministry of Environmental Protection of the People's Republic of China, the geometric mean concentration of As was twice the annual limit of standard reference, while Pb of some aerosol samples beyond the annual limit of standard reference respectively. The mass fraction of Fe, Zn, Pb, Ti accounted for over 0.1%, while that of Mn, Cu, As, Se etc. 0.01%. These elements were primary inorganic pollutants, and especially the hazards and sources of As and Pb should be concerned. There were 6 main pollution sources were chosen by the factor analysis method, including industrial dust and human beings activities, biomass combustion and building dust, soil and sand dusts, fossil fuel, electronic waste and metal smelting, with the variance contribution rate of 40.3%, 27.0%, 9.1%, 4.9%, 4.8% and 4.6% respectively. ICP-MS and ICP-AES can be applied to analyzing multi-elements in PM2.5 accurately and quickly to facilitate source apportionment, and it indicated that the relevant pollution sources should be considered and the effect of regional transferring of haze pollution sources should be taken into account, and specific measures should be taken for control.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pollution sources
20
icp-ms icp-aes
12
source apportionment
8
pm25 haze
8
haze weather
8
winter 2013
8
aerosol samples
8
annual limit
8
limit standard
8
standard reference
8

Similar Publications

Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.

View Article and Find Full Text PDF

Application of active biomonitoring technique for the assessment of air pollution by potentially toxic elements in urban areas in the Kemerovo Region, Russia.

Environ Monit Assess

January 2025

Municipal Budgetary Educational Institution "Lyceum of the City of Yurga", St. Kirova, 7, Yurga, Kemerovo Region, 652055, Russia.

In Kemerovo Region (Kuzbass, Southwest Siberia), there is the largest coal basin in Russia and one of the largest in the world. Active moss biomonitoring was applied to assess the impact of potentially toxic elements on air pollution in five urban areas of the region. In each of the chosen urban regions, the moss bags were exposed in November and December of 2022 at locations with varying degrees of anthropogenic pressure.

View Article and Find Full Text PDF

This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.

View Article and Find Full Text PDF

Significant NO Formation in Truck Exhaust Plumes and Its Association with Ambient O: Evidence from Extensive Plume-Chasing Measurements.

Environ Sci Technol

January 2025

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.

Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.

View Article and Find Full Text PDF

There is a direct and close relationship between ship emissions in port waters and the operational status of the ships. Precisely identifying the operational status of ships in port waters and thoroughly exploring the specific relationship between these activities and ship emissions is crucial for achieving accurate control and scientific reduction of emissions from ships in port areas. With advancements in technology, AIS data can accurately capture the operational status of ships, facilitating a macro-level analysis of ship behavior and emission characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!