Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.

Sci Adv

Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan. ; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.

Published: October 2015

Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646795PMC
http://dx.doi.org/10.1126/sciadv.1500360DOI Listing

Publication Analysis

Top Keywords

upper mantle
24
dislocation-accommodated grain
8
grain boundary
8
boundary sliding
8
olivine
8
earth's upper
8
dislocation creep
8
plasticity olivine
8
pressures gpa
8
upper
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!