In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646555 | PMC |
http://dx.doi.org/10.1364/BOE.6.004483 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
Research Institute of Subtropical Forestry, Chinese Academy of Forestry/Zhejiang Key Laboratory of Forest Genetics and Bree-ding, Hangzhou 311400, China.
To rapidly acquire fiber phenotypic data for wood quality assessment, we used a portable NIR spectro-meter to collect spectral data in 100 individuals of at 18-year-old of 20 different provenances, and simultaneously collected wood cores. Wood basic density and the anatomical structure of wood fiber were measured. The standard normal variate (SNV), orthogonal signal correction (OSC), and multiplicative scatter correction (MSC) methods were used for spectral preprocessing, the competitive adaptive reweighted sampling (CARS) method were used for wavelength selection, and the partial least squares regression (PLSR) model were established.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany.
In recent years, luminescent solar concentrators (LSCs) have gained a renaissance as a pivotal transparent photovoltaic (PV) for building-integrated photovoltaics (BIPVs). However, most of the studies focused on light-selective LSCs, and less attention was paid to the utilization of the full solar spectrum. In this study, a lead-free microcrystal CsAgNaBiInCl (CANBIC) perovskite phosphor is demonstrated to have bifunctional effects of luminescent down-shifting (LDS) and light scattering for the fabrication of LSCs, realizing light response from ultraviolet (UV) to NIR regions by an edge-mounted Si solar cell.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India.
This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.
View Article and Find Full Text PDFPLoS One
December 2024
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
Atmospheric correction plays an important role in satellite monitoring of lake water quality. However, different atmospheric correction algorithms yield significantly different accuracy for inland lake waters beset by shallowness and turbidity. Finding a suitable algorithm for a specific lake is critical for quantitative satellite water-environmental monitoring.
View Article and Find Full Text PDFInt Ophthalmol
December 2024
Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne, Australia.
Objective: Near-infrared reflectance (NIR) is a commonly performed noncontact and rapid imaging technique. This paper reviews the clinical applications of NIR for diagnosing and monitoring retinal diseases.
Methods: A comprehensive search was conducted across the Pubmed database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!