The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b03624 | DOI Listing |
Polymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski", 24, Tzar Assen Str., 4000 Plovdiv, Bulgaria.
Lipid peroxidation is a major process that determines the quality of various oil samples during their use and storage, in which the primary products are hydroperoxides (HP'). HP' are very stable compounds at ambient conditions and are harmful to human health. Therefore, the evaluation of the degree of oil oxidation is an excellent tool for ensuring food safety.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
Rinsing during surimi protein processing can result in the loss of essential nutrients, such as fats and minerals. Therefore, supplementing functional fats in a stable form can make up for the fat loss of surimi during the rinsing process. This research aimed to investigate the effects of incorporating pre-emulsified flaxseed oil with different concentrations of rutin (0, 0.
View Article and Find Full Text PDFFront Microbiol
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and .
View Article and Find Full Text PDFRSC Adv
January 2025
Regenerative Medicine and Tissue Repair Material Research Center, HuangpuInstitute of Materials 88 Yonglong Avenue of Xinlong Town Guangzhou 511363 P. R. China.
As a well-known aromatic herb rich in various bioactive molecules, the extract of is widely used in cosmetics. However, the extraction process for is far from perfect. Moreover, the water- and oil-soluble components are too complex to be compatible with each other.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!