Green recovery of mercury from domestic and industrial waste.

J Hazard Mater

Grupo de Química Verde Coloidal e Macromolecular, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Viçosa, MG 36570-900, Brazil. Electronic address:

Published: March 2016

Recovery of mercury from effluents is fundamental for environmental preservation. A new, green method was developed for separation of mercury from effluent containing different metals. The extraction/separation of Hg(II) was studied using aqueous two-phase system (ATPS) comprising by polyethylene oxide (PEO1500) or triblock copolymers (L64 or L35), electrolyte (sodium citrate or sodium sulfate) and water in the presence or absence of chloride ions. The extraction behavior of the Hg(II) for the macromolecule-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and macromolecule of the ATPS. The APTS of PEO1500+sodium citrate+H2O (pH 1.00 and 0.225 mol kg(-1) KCl) produced the highest Hg(II) %E=(92.3 ± 5.2)%. Under the same conditions, excellent separation factors (1.54×10(2)-3.21×10(10)) for recovery of mercury in the presence of co-existing metals were obtained. Efficient and selective extraction of Hg(II) from domestic and industrial synthetic effluents was achieved using this ATPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.11.009DOI Listing

Publication Analysis

Top Keywords

recovery mercury
12
domestic industrial
8
green recovery
4
mercury
4
mercury domestic
4
industrial waste
4
waste recovery
4
mercury effluents
4
effluents fundamental
4
fundamental environmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!