AI Article Synopsis

  • - The study explores how increasing UV radiation and nutrient levels affect phytoplankton in the Mediterranean Sea, which is vital to marine food webs.
  • - An experiment showed that while UV radiation generally had little impact on most phytoplankton traits, it increased certain phosphatase levels and algal phosphorus content, suggesting an adaptation to low-nutrient conditions.
  • - The interaction between UV radiation and phosphorus had mixed results, enhancing some photosynthetic rates but ultimately reducing primary production and biomass due to increased photodamage from excess electron flows following nutrient boosts.

Article Abstract

Some of the most important effects of global change on coastal marine systems include increasing nutrient inputs and higher levels of ultraviolet radiation (UVR, 280-400 nm), which could affect primary producers, a key trophic link to the functioning of marine food webs. However, interactive effects of both factors on the phytoplankton community have not been assessed for the Mediterranean Sea. An in situ factorial experiment, with two levels of ultraviolet solar radiation (UVR+PAR vs. PAR) and nutrients (control vs. P-enriched), was performed to evaluate single and UVR×P effects on metabolic, enzymatic, stoichiometric and structural phytoplanktonic variables. While most phytoplankton variables were not affected by UVR, dissolved phosphatase (APAEX) and algal P content increased in the presence of UVR, which was interpreted as an acclimation mechanism of algae to oligotrophic marine waters. Synergistic UVR×P interactive effects were positive on photosynthetic variables (i.e., maximal electron transport rate, ETRmax), but negative on primary production and phytoplankton biomass because the pulse of P unmasked the inhibitory effect of UVR. This unmasking effect might be related to greater photodamage caused by an excess of electron flux after a P pulse (higher ETRmax) without an efficient release of carbon as the mechanism to dissipate the reducing power of photosynthetic electron transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658109PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142987PLOS

Publication Analysis

Top Keywords

phytoplankton community
8
mediterranean sea
8
levels ultraviolet
8
interactive effects
8
electron transport
8
interactive uvr
4
uvr phosphorus
4
phosphorus coastal
4
phytoplankton
4
coastal phytoplankton
4

Similar Publications

Unlabelled: Biological diversity is declining across the tree of life, including among prokaryotes. With the increasing awareness of host-associated microbes as potential regulators of eukaryotic host physiology, behavior, and ecology, it is important to understand the implications of declining diversity within host microbiomes on host fitness, ecology, and ecosystem function. We used phytoplankton and their associated environmental microbiomes as model systems to test the independent and interactive effects of declining microbiome diversity with and without other stressors often caused by human activity-elevated temperature and altered nutrient availability.

View Article and Find Full Text PDF

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Microbial competition for iron determines its availability to the ferrous wheel.

ISME J

January 2025

Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.

Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.

View Article and Find Full Text PDF

Abundance of non-toxic and low-level toxic Pseudo-nitzschia explains the low levels of neurotoxin domoic acid in Chinese coastal waters.

J Hazard Mater

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China. Electronic address:

Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline.

View Article and Find Full Text PDF

Evaluating the tolerance of harmful algal bloom communities to copper.

Environ Pollut

January 2025

School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL. Electronic address:

Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO·5HO), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO·5HO applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!