Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies.

Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis.

Methods: Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings.

Measurements And Main Results: Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling.

Conclusions: These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849177PMC
http://dx.doi.org/10.1164/rccm.201502-0299OCDOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
16
matriptase expression
16
matriptase
12
expression activity
12
membrane-anchored serine
8
serine protease
8
protease matriptase
8
pulmonary
8
pulmonary fibroblasts
8
bleomycin-induced pulmonary
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Introduction: Autoantibody-mediated complement activation plays an essential role in a variety of autoimmune disorders. However, the role of complement in systemic sclerosis (SSc) remains largely unknown. In this study, we aimed to determine the role of complement C3 in the development of a recently described SSc mouse model based on autoimmunity to angiotensin II receptor type 1 (AT1R).

View Article and Find Full Text PDF

The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis.

Front Immunol

December 2024

Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation.

View Article and Find Full Text PDF

Objectives: Little is known about how various treatments impact the progression of interstitial lung disease (ILD) in rheumatoid arthritis (RA) patients. Here, we compared ILD progression in RA patients treated with Janus kinase inhibitors (JAKi) or biological disease-modifying anti-rheumatic drugs (bDMARDs). experiments were also performed to evaluate the potential effects of the drugs on epithelial-mesenchymal transition (EMT), a key event in pulmonary fibrosis.

View Article and Find Full Text PDF

Investigates the Role of PANoptosis in Idiopathic Pulmonary Fibrosis and Potential Therapeutic Targets.

J Inflamm Res

December 2024

Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People's Republic of China.

Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!