Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that suppress both innate and adaptive immune responses through multiple mechanisms. In recent years, much of our knowledge of the function of MDSCs has come from cancer studies. However, a few recent advances have begun to characterize MDSCs in feto-maternal immune cross-talk. The microenvironment at the fetal-maternal interface is a complex milieu of trophoblasts and maternally-derived cells, which are biased to tolerogenic and Th2-type responses. Current data reveal that MDSCs accumulate at the fetal-maternal interface in healthy pregnancies. Yet, little is known about how MDSCs develop and why the response of MDSCs is heavily granulocytic. In this review, we discuss recent findings on the molecular mechanisms that regulate the expansion and function of MDSCs, in addition to various roles of MDSCs implicated in the modulation of feto-maternal immune cross-talk. Understanding the roles of MDSCs in inducing maternal-fetal tolerance, which is compromised in patients suffering from pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, and preterm birth, we thus propose that the immunomodulatory activity of MDSCs should be carefully considered for the therapeutic approaches targeting pregnancy complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jri.2015.11.001 | DOI Listing |
Asian J Transfus Sci
May 2023
Department of Transfusion Medicine, Saveetha Medical College and Hospitals, Chennai, Tamil Nadu, India.
Hemolytic disease of foetus and newborn (HDFN) is a disease characterized by the destruction of fetal red cells by the maternal antibodies which occurs due to allo immunization in the mother by feto-maternal blood group incompatibility. The antibodies most frequently implicated in HDFN may vary depending on the demographic location under consideration. In areas where RhIg administration is available, ABO antibodies are more commonly implicated.
View Article and Find Full Text PDFBiol Reprod
January 2025
Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, United States of America.
Chorionic trophoblast cells (CTCs) are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating CTCs dealt with two separate questions: (1) The necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (2) The functional differences between CTCs and other placental trophoblast lineages of cells (placental cytotrophoblast cells [PTC], and extravillous trophoblast [EVT]). CTCs were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
June 2024
Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
Sci Rep
December 2024
Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
The lung is one of the most frequently metastasized organs from various cancer entities, especially colorectal cancer (CRC). The occurrence of lung metastasis correlates with worse prognosis in CRC patients. Here, we aimed to investigate the role of IL-10 in lung metastasis development and identify the cellular source and target cells of IL-10 during lung metastatic establishment.
View Article and Find Full Text PDFSemin Immunopathol
December 2024
Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
Toleration of a semi-allogeneic fetus in the mother's uterus as well as tolerance after allogeneic hematopoietic stem cell transplantation (HSCT) appear to share some immunologic concepts. The existence of microchimeric cells, and the original idea of a bidirectional cell trafficking between mother and child during pregnancy have been known for decades. Today, origins and mechanisms of persistence of microchimeric cells are intensively being elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!