Radioprotective Effect of Aminothiol PrC-210 on Irradiated Inner Ear of Guinea Pig.

PLoS One

Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America.

Published: June 2016

Radiotherapy of individuals suffering with head & neck or brain tumors subserve the risk of sensorineural hearing loss. Here, we evaluated the protective effect of Aminothiol PrC-210 (3-(methyl-amino)-2-((methylamino)methyl)propane-1-thiol) on the irradiated inner ear of guinea pigs. An intra-peritoneal or intra-tympanic dose of PrC-210 was administered prior to receiving a dose of gamma radiation (3000 cGy) to each ear. Auditory Brainstem Responses (ABRs) were recorded one week and two weeks after the radiation and compared with the sham animal group. ABR thresholds of guinea pigs that received an intra-peritoneal dose of PrC-210 were significantly better compared to the non-treated, control animals at one week post-radiation. Morphologic analysis of the inner ear revealed significant inflammation and degeneration of the spiral ganglion in the irradiated animals not treated with PrC-210. In contrast, when treated with PrC-210 the radiation effect and injury to the spiral ganglion was significantly alleviated. PrC-210 had no apparent cytotoxic effect in vivo and did not affect the morphology or count of cochlear hair cells. These findings suggest that aminothiol PrC-210 attenuated radiation-induced cochlea damage for at least one week and protected hearing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657906PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143606PLOS

Publication Analysis

Top Keywords

aminothiol prc-210
12
inner ear
12
prc-210
8
irradiated inner
8
ear guinea
8
guinea pigs
8
dose prc-210
8
spiral ganglion
8
treated prc-210
8
radioprotective aminothiol
4

Similar Publications

The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family of aminothiols designed to reduce toxicity while scavenging reactive oxygen species (ROS). Our study investigated the protective role of a single oral administration of PrC-210 against radiation-induced hematopoietic and intestinal injury in mice.

View Article and Find Full Text PDF

PrC-210 is a direct-acting ROS-scavenger. It's active when administered orally, IV, or topically; it has none of the nausea/emesis nor hypotension side effects that have precluded human amifostine use. PrC-210 confers 100% survival to mice and rats that received an otherwise 100% lethal radiation dose and 36% reduction of ischemia-reperfusion-induced mouse myocardial infarct damage, and thus is a viable candidate to prevent human ROS-induced ischemia-reperfusion and ionizing radiation toxicities.

View Article and Find Full Text PDF

Radiation-induced cancer is an ongoing and significant problem, with sources that include clinics worldwide in which 3.1 billion radiology exams are performed each year, as well as a variety of other scenarios such as space travel and nuclear cleanup. These radiation exposures are typically anticipated, and the exposure is typically well below 1 Gy.

View Article and Find Full Text PDF

Managing myocardial infarction (MI) to reduce cardiac cell death relies primarily on timely reperfusion of the affected coronary site, but reperfusion itself induces cell death through a toxic, ROS-mediated process. In this study, we determined whether the PrC-210 aminothiol ROS-scavenger could prevent ROS-induced damage in post-MI hearts. In a series of both in vitro and in vivo experiments, we show that: (a) in vitro, PrC-210 was the most potent and effective ROS-scavenger when functionally compared to eight of the most commonly studied antioxidants in the MI literature, (b) in vitro PrC-210 ROS-scavenging efficacy was both immediate (seconds) and long-lasting (hours), which would make it effective in both (1) (), as post-MI or cardiac surgery hearts are reperfused with PrC-210-containing blood, and (2) (s) as hearts are bathed with systemic PrC-210 after MI or surgery, (c) systemic PrC-210 caused a significant 36% reduction of mouse cardiac muscle death following a 45-minute cardiac IR insult; in a striking coincidence, the PrC-210 36% reduction in cardiac muscle death equals the 36% of the MI-induced cardiac cell death estimated 6 years ago by Ovize and colleagues to result from "reperfusion injury," (d) hearts in PrC-210-treated mice performed better than controls after heart attacks when functionally analyzed using echocardiography, and (e) the PrC-210 ROS-scavenging mechanism of action was corroborated by its ability to prevent >85% of the direct, HO-induced killing of neonate cardiomyocytes in cell culture.

View Article and Find Full Text PDF

Background: Ischemia-reperfusion (IR) injury remains a significant problem for all solid organ transplants; thus, an important unmet need in transplantation is the prevention of IR injury. PrC-210 has demonstrated superior prevention of reactive oxygen species damage in several preclinical studies as a free radical scavenger. Here, we describe its profound efficacy in suppressing IR injury in a murine model of kidney IR injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!