TRIM protein family is an evolutionarily conserved gene family implicated in a number of critical processes including inflammation, immunity, antiviral and cancer. In an effort to profile the expression patterns of TRIM superfamily in several non-small cell lung cancer (NSCLC) cell lines, we found that the expression of 10 TRIM genes including TRIM3, TRIM7, TRIM14, TRIM16, TRIM21, TRIM22, TRIM29, TRIM59, TRIM66 and TRIM70 was significantly upregulated in NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line, whereas the expression of 7 other TRIM genes including TRIM4, TRIM9, TRIM36, TRIM46, TRIM54, TRIM67 and TRIM76 was significantly down-regulated in NSCLC cell lines compared with that in HBE cells. As TRIM59 has been reported to act as a proto-oncogene that affects both Ras and RB signal pathways in prostate cancer models, we here focused on the role of TRIM59 in the regulation of NSCLC cell proliferation and migration. We reported that TRIM59 protein was significantly increased in various NSCLC cell lines. SiRNA-induced knocking down of TRIM59 significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in G2 phase. Moreover, TRIM59 knocking down affected the expression of a number of cell cycle proteins including CDC25C and CDK1. Finally, we knocked down TRIM59 and found that p53 protein expression levels did not upregulate, so we proposed that TRIM59 may promote NSCLC cell growth through other pathways but not the p53 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658198 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142596 | PLOS |
Radiat Oncol
January 2025
Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
Background: Patients with non-small cell lung cancer (NSCLC) are prone to developing brain metastases (BMs), particularly those with epidermal growth factor receptor (EGFR) mutations. In clinical practice, treatment-naïve EGFR-mutant NSCLC patients with asymptomatic BMs tend to choose EGFR-tyrosine kinase inhibitors (TKIs) as first-line therapy and defer intracranial radiotherapy (RT). However, the effectiveness of upfront intracranial RT remains unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China.
Background: LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused.
Methods: A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023.
Clin Transl Oncol
January 2025
Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden.
View Article and Find Full Text PDFInvest New Drugs
January 2025
Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan.
The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!