Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts.

Mech Dev

Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea; Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do 232-916, Republic of Korea. Electronic address:

Published: November 2015

X-chromosome inactivation (XCI) is an epigenetic mechanism that occurs in the eutherian embryo development to equalize the dosage of X-linked genes between males and females. This event is regulated by various factors, and the genes located in the X-chromosome inactivation center (XIC), which is known to be an evolutionary conserved region, are associated with XCI; however, a number of studies regarding this epigenetic event and genomic region are primarily performed in mouse models despite its species-specific features. Thus, in this study, the porcine XIC was identified, and we analyzed the expression of XIC-linked genes in porcine preimplantation embryos. Comparative sequence analysis revealed that the porcine XIC is synteny with that of human and the non-coding RNAs were less conserved compared with the protein coding genes in the XIC. Among the XIC-linked genes, the expression levels of CHIC1 and RLIM were decreased from morula to blastocyst development and their dosage was compensated between the male and female blastocysts. Additionally, the CpG sites of CHIC1 were approximately 50% methylated in parthenote blastocysts. Contrary to these genes, XIST and LOC102165544, an uncharacterized non-coding gene, showed dramatically increased expression levels after the morula stage and preferential female expression in blastocysts. Imprinted XIST expression was not observed, and their CpG sites were hypo-methylated in parthenogenic blastocysts. These results demonstrate that the porcine XIC consists of an evolutionary conserved structure with fewer sequences conserved non-coding RNAs. In addition, a few XIC-linked genes would likely achieve dosage compensation, but XCI would not be completed in porcine blastocysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2015.10.005DOI Listing

Publication Analysis

Top Keywords

x-chromosome inactivation
16
porcine xic
12
xic-linked genes
12
dosage compensation
8
genes
8
genes porcine
8
porcine preimplantation
8
preimplantation embryos
8
evolutionary conserved
8
non-coding rnas
8

Similar Publications

Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Objectives: Hemophilia A (HA) is an X-linked recessive inherited bleeding disorder that typically affects men. Women are usually asymptomatic carriers, and rarely presenting with severe or moderately severe phenotype. This study aims to describe a case of a 17-year-old girl with moderate HA, investigating the mechanisms of her condition and the genetic basis within her family.

View Article and Find Full Text PDF

In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).

View Article and Find Full Text PDF

Clinical management of female patients with Fabry disease based on expert consensus.

Orphanet J Rare Dis

January 2025

Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Fabry disease is an X-linked lysosomal storage disorder that causes accumulation of glycosphingolipids in body tissues and fluids, leading to progressive organ damage and life-threatening complications. It can affect both males and females and can be classified into classic or later-onset phenotypes. The disease severity in females ranges from asymptomatic to the more severe, classic phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!