Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new approach to investigate a molecular recognition process of protein is presented based on the three-dimensional reference interaction site model (3D-RISM) theory, a statistical mechanics theory of molecular liquids. Numerical procedure for solving the conventional 3D-RISM equation consists of two steps. In step 1, we solve ordinary RISM (or 1D-RISM) equations for a solvent mixture including target ligands in order to obtain the density pair correlation functions (PCF) among molecules in the solution. Then, we solve the 3D-RISM equation for a solute-solvent system to find three-dimensional density distribution functions (3D-DDF) of solvent species around a protein, using PCF obtained in the first step. A key to the success of the method was to regard a target ligand as one of "solvent" species. However, the success is limited due to a difficulty of solving the 1D-RISM equation for a solvent mixture, including large ligand molecules. In the present paper, we propose a method which eases the limitation concerning solute size in the conventional method. In this approach, we solve a solute-solute 3D-RISM equations for a protein-ligand system in which both proteins and ligands are regarded as "solutes" at infinite dilution. The 3D- and 1D-RISM equations are solved for protein-solvent and ligand-solvent systems, respectively, in order to obtain the 3D- and 1D-DDF of solvent around the solutes, which are required for solving the solute-solute 3D-RISM equation. The method is applied to two practical and noteworthy examples concerning pharmaceutical design. One is an odorant binding protein in the Drosophila melanogaster , which binds an ethanol molecule. The other is phospholipase A2, which is known as a receptor of acetylsalicylic acid or aspirin. The result indicates that the method successfully reproduces the binding mode of the ligand molecules in the binding sites measured by the experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct200358h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!