The tumor microenvironment of cholangiocarcinoma (CCA) is composed of numerous cells, including mast cells (MCs). MCs release histamine, which increases CCA progression and angiogenesis. Cholangiocytes secrete stem cell factor, which functions via the MC growth factor receptor c-Kit. Here, we show that cholangiocytes express histidine decarboxylase and its inhibition reduces CCA growth. MC recruitment in the tumor microenvironment increased CCA growth. MC infiltration and MC markers were detected by toluidine blue staining and real-time PCR in human biopsies and in tumors from athymic mice treated with saline, histamine, histidine decarboxylase inhibitor, or cromolyn sodium. Tumor growth, angiogenesis, and epithelial-mesenchymal transition (EMT)/extracellular matrix (ECM) markers were measured in mice treated with cromolyn sodium. In vitro, human CCA cells were treated with MC supernatant fluids before evaluating angiogenesis and EMT/ECM expression. Migration assays were performed with CCA cells treated with the stem cell factor inhibitor. MC supernatant fluids increased CCA histidine decarboxylase, vascular endothelial growth factor, and MC/EMT/ECM expression that decreased with pretreatment of cromolyn sodium. MCs were found in human biopsies. In mice treated with cromolyn sodium, MC infiltration and tumor growth decreased. Inhibition of CCA stem cell factor blocked MC migration and MC/EMT/ECM in CCA. MCs migrate into CCA tumor microenvironment via c-Kit/stem cell factor and increase tumor progression, angiogenesis, EMT switch, and ECM degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707204PMC
http://dx.doi.org/10.1016/j.ajpath.2015.09.016DOI Listing

Publication Analysis

Top Keywords

cell factor
16
cromolyn sodium
16
tumor microenvironment
12
stem cell
12
histidine decarboxylase
12
mice treated
12
cca
10
c-kit/stem cell
8
progression angiogenesis
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!