Purpose: Liver diseases are a major global health concern often requiring invasive assessment by needle biopsy. (31)P magnetic resonance spectroscopic imaging (MRSI) allows non-invasive probing of important liver metabolites. Recently, the adiabatic multi-echo spectroscopic imaging sequence with spherical k-space sampling (AMESING) was introduced at 7T, enabling acquisition of T2 information. T2-weighed averaging of the multiple echoes improves signal-to-noise ratio (SNR). The purpose of our study was to implement AMESING MRSI of the liver at 3T and 7T, derive localized T2 information and compare T2-weighted average spectra in terms of SNR.

Methods: Ten male volunteers underwent 2D AMESING MRSI at 3T and 7T after a minimum four-hour fast. SNR was calculated for PC, PE, Pi, GPE, GPC and α-ATP using maximum peak amplitudes and the SD of the noise. Metabolite peak ratios were calculated after fitting in jMRUI. SNR values and peak ratios were compared with the Wilcoxon signed-rank test.

Results: For the first time liver metabolites' T2 values at 7T were measured: PE (55.6±3.5 ms), PC (51.2±2.3 ms), Pi (46.4±1.1 ms), GPE (44.0±0.8 ms), GPC (50.4±0.8 ms) and α-ATP (18.2±0.4 ms). SNR gain using T2-weighted averaging at 7T resulted in a 1.2× SNR gain. In conjunction with higher field strength and improved coil set-up T2-weighted averaging at 7T allowed a total 3.2× SNR gain compared to 3T FID-only.

Conclusion: AMESING 2D MRSI of the liver at 7T provides T2 values that allow T2-weighted averaging of data from multiple echoes resulting in improved SNR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2015.10.018DOI Listing

Publication Analysis

Top Keywords

t2-weighted averaging
16
amesing mrsi
12
snr gain
12
snr
8
improved snr
8
snr purpose
8
spectroscopic imaging
8
multiple echoes
8
mrsi liver
8
peak ratios
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!