Hypoxia-inducible Factor-1α (HIF-1α)-regulated expression of Hexokinase-II (HKII) remains a cornerstone in the maintenance of high metabolic demands subserving various pro-tumor functions including immune evasion in gliomas. Since inflammation-induced HIF-1α regulates Major Histocompatibility Complex class I (MHC-I) gene expression, and as cytoskeletal dynamics affect MHC-I membrane clusters, we investigated the involvement of HIF-1α-HKII axis in Tumor Necrosis Factor-α (TNFα)-mediated MHC-I membrane cluster stability in glioma cells and the involvement of actin cytoskeleton in the process. TNFα increased the clustering and colocalization of MHC-I with cortical actin in a HIF-1α dependent manner. siRNA mediated knockdown of HIF-1α as well as enzymatic inhibition of HK II by Lonidamine, delocalized mitochondrially bound HKII. This altered subcellular HKII localization affected TNFα-induced cofilin activation and actin turnover, as pharmacological inhibition of HKII by Lonidamine decreased Actin-related protein 2 (ARP2)/cofilin interaction. Photobleaching studies revealed destabilization of TNFα- induced stable MHC-I membrane clusters in the presence of Lonidamine and ARP2 inhibitor CK666. This work highlights how TNFα triggers a previously unknown function of metabolic protein HKII to influence an immune related outcome. Our study establishes the importance of inflammation induced HIF-1α in integrating two crucial components- the metabolic and immune, through reorganization of cytoskeleton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2015.11.016 | DOI Listing |
Cell Death Dis
January 2025
Department of Pathology, The Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
Approximately 80% of nasopharyngeal carcinoma (NPC) patients exhibit EGFR overexpression. The overexpression of EGFR has been linked to its potential role in modulating major histocompatibility complex class I (MHC-I) molecules. We discovered that EGFR, operating in a kinase-independent manner, played a role in stabilizing the expression of SLC7A11, which subsequently inhibited MHC-I antigen presentation.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.
View Article and Find Full Text PDFGenes Immun
December 2024
Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China.
The hypoxic microenvironment is an essential feature of solid tumors. Autophagy has been controversial in its role in immune regulation. This project aims to elucidate the impact of autophagy in pancreatic cancer (PC) under specific conditions (hypoxia) on CD8 T cells and the regulatory mechanisms behind it.
View Article and Find Full Text PDFImmunology
February 2025
Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China.
This study attempted to identify the relevant pathways involved in autophagy activation of pancreatic cancer and explore the mechanisms underlying immune evasion. Western blot (WB) was used to detect the expression of ITGB4, BNIP3, autophagy-related proteins and MHC-I. Co-immunoprecipitation (Co-IP) was used to verify the binding mode of ITGB4 and BNIP3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!