Tissue Factor Activity in Dialysis Access Grafts.

Ann Vasc Surg

Department of Surgery, University of Washington, Seattle, WA; Department of Surgery, Seattle VA Puget Sound Health Care System, Seattle, WA. Electronic address:

Published: February 2016

Background: Intimal hyperplasia at the venous anastomosis of dialysis grafts causes early failure. We developed a sheep model of arteriovenous prosthetic grafts that fail rapidly due to intimal hyperplasia with histologic features nearly identical to human access grafts. A prominent feature of lesion development in this model is formation of luminal thrombus that becomes organized into stenosing lesions by macrophage and myofibroblast infiltration. To better understand this process, we examined the presence and activity of tissue factor (TF) in this system. This protein is the physiological initiator of coagulation in vivo and is known to contribute to development of intimal hyperplasia after vascular injury.

Methods: Expanded polytetrafluorethylene (ePTFE) grafts were placed between the carotid artery and external jugular vein in sheep. Grafts were examined for luminal TF activity using a novel ex vivo assay. In a separate series of grafts, immunohistochemistry was used to localize smooth muscle cells, monocytes, and TF protein.

Results: At 2 days, luminal TF activity already was higher in the venous and arterial end of the graft than in the adventitia. This high level of activity persisted at 8 weeks. TF activity was higher in the venous end of the grafts than in the arterial end at 2 and 8 weeks (40% and 47% increase, n = 5, n = 3, respectively, P < 0.05). Immunohistochemistry revealed TF protein localized in regions with or adjacent to fibrin accumulation and often in regions close to the lumen.

Conclusions: This study further examines the development of intimal hyperplasia in ePTFE dialysis access grafts. In this model, TF levels on the luminal surface were increased throughout the arteriovenous grafts and the adjacent vessels as early as 2 days after engraftment and for as long as 8 weeks thereafter. The highest levels of activity were found in the venous end of the graft, where hyperplasia is most robust. Increased activity of TF is associated with luminal thrombus, which provides a scaffolding for development of intimal hyperplasia. These findings present an opportunity to develop strategies to limit TF activity within the graft. Further studies using agents delivered locally or incorporated into the graft matrix to block the luminal activity of TF are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.avsg.2015.10.008DOI Listing

Publication Analysis

Top Keywords

intimal hyperplasia
12
tissue factor
8
luminal activity
8
activity higher
8
higher venous
8
grafts
7
activity
6
factor activity
4
activity dialysis
4
dialysis access grafts
4

Similar Publications

Background: The arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis. AVF stenosis is a common complication, often requiring balloon angioplasty. For recurrent stenosis, AVF stenting may be an option.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF
Article Synopsis
  • Intimal hyperplasia (IH) is a major issue in vascular interventions, and this study investigates the role of gangliosides GA2 in its development.
  • Researchers found that GA2 levels were significantly higher in atherosclerotic mouse aortae and plasma, and injecting GA2 worsened IH by interacting with macrophages.
  • The study reveals that GA2 activates caspase-4 and promotes pyroptosis in macrophages, suggesting a new mechanism for IH that could lead to potential diagnostic and treatment strategies.
View Article and Find Full Text PDF

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!