Implications of gamma band activity in the pedunculopontine nucleus.

J Neural Transm (Vienna)

IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina.

Published: July 2016

The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877293PMC
http://dx.doi.org/10.1007/s00702-015-1485-2DOI Listing

Publication Analysis

Top Keywords

gamma band
12
band activity
12
pedunculopontine nucleus
8
ppn
8
high-frequency activity
8
waking rem
8
rem sleep
8
calcium channels
8
bipolar disorder
8
activity
5

Similar Publications

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Objectives: To compare lag-screw slide and revision surgery rate between two generations of the Stryker Gamma cephalomedullary nail (Stryker, Kalamazoo, MI).

Methods: Design: Retrospective chart review.

Setting: Single academic, Level-1 Trauma Center.

View Article and Find Full Text PDF

Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.

Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.

View Article and Find Full Text PDF

Introduction: Accurate prognostication in comatose survivors of cardiac arrest is a challenging and high-stakes endeavor. We sought to determine whether internal EEG subparameters extracted by the Bispectral Index (BIS) monitor, a device commonly used to estimate depth-of-anesthesia intraoperatively, could be repurposed to predict recovery of consciousness after cardiac arrest.

Methods: In this retrospective cohort study, we trained a 3-layer neural network to predict recovery of consciousness to the point of command following versus not based on 48 hours of continuous EEG recordings in 315 comatose patients admitted to a single US academic medical center after cardiac arrest (Derivation cohort: N=181; Validation cohort: N=134).

View Article and Find Full Text PDF

Tuning anomalous Hall conductivity antiferromagnetic configurations in GdPtBi.

Phys Chem Chem Phys

January 2025

Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.

The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!