Background: Scleral cross-linking (SXL) by riboflavin and light application has been introduced as a possible treatment to increase scleral tissue stiffness and to inhibit excessive axial elongation of highly myopic eyes. We evaluated an ocular tissue damage threshold for blue light irradiation, and used SXL treatment to induce eye growth inhibition.
Methods: The sclera of 3-week-old rabbits (39 pigmented and 15 albino rabbits) were treated with different blue light intensities (450 ± 50 nm) and riboflavin. Alterations and a damage threshold were detected in ocular tissues by means of light microscopy and immunohistochemistry. The influence of SXL on the eye growth was examined in 21 young rabbits and was measured by using A-scan ultrasonography, micrometer caliper, and for selected eyes additionally by MR imaging.
Results: Light microscopic examinations demonstrated degenerative changes in ocular tissue after irradiation with blue light intensities above 400 mW/cm(2) (with and without riboflavin application). Therefore, that light intensity was defined as the damage threshold. Tissue alteration in retina, choroid, and sclera and activation of retinal microglia cells and Müller cells could be earlier observed at blue light intensities of 150 and 200 mW/cm(2). Albino rabbits were less sensitive to this SXL treatment. A significant reduction of the eye growth could be detected by SXL treatment with the minimal efficient blue light intensity of 15 mW/cm(2) and maintained stable for 24 weeks.
Conclusions: SXL with riboflavin and blue light intensities below a defined damage threshold can induce a long lasting growth inhibitory effect on young rabbit eyes. Therefore, SXL might be a realistic approach to inhibit eye elongation in highly myopic eyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00417-015-3213-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!