New memory devices based on the proton transfer process.

Nanotechnology

Institute of Physics, Polish Academy of Science (PAS), Al. Lotników 32/46, 02-668 Warszawa, Poland.

Published: January 2016

AI Article Synopsis

  • * Information writing uses the electrostatic potential from scanning tunneling microscopy (STM), while reading relies on local magnetization effects at oxygen-saturated zigzag graphene nanoribbon edges.
  • * The system allows for adjustable energy barriers for data storage, promoting compact design for applications in random access and flash memory devices.

Article Abstract

Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing  information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge-saturated with oxygen or the hydroxy group-and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/1/015202DOI Listing

Publication Analysis

Top Keywords

memory devices
12
proton transfer
8
transfer process
8
devices based
4
based proton
4
process memory
4
devices operating
4
operating fast
4
fast proton
4
process proposed
4

Similar Publications

Photothermal-triggering shape memory polyurethane allows for precise and controllable shape transformation under remote light stimulation, making it highly desirable for applications in intelligent devices. This study develops a sustainable and high-performance lignin-based polyurethane (LPU) using a one-stone-two-birds strategy, wherein lignin serves as both a synthetic monomer and an internal photothermal agent. The incorporation of lignin significantly improved the mechanical properties of LPU, achieving a tensile strength of 42.

View Article and Find Full Text PDF

Multiple Polarization States in Hf ZrO Thin Films by Ferroelectric and Antiferroelectric Coupling.

Adv Mater

December 2024

Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China.

HfO-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf ZrO (x = 0.

View Article and Find Full Text PDF

Magnetic liquid metal droplets, featured by unique fluidity, metallic conductivity, and magnetic reactivity, are of growing significance for next-generation flexible electronics. Conventional fabrication routes, which typically incorporate magnetic nanoparticles into liquid metals, otherwise encounter the pitfall pertaining to surface adhesivity and corrosivity over device modules. Here, an innovative approach of synergizing liquid metals with 2D magnetic materials is presented, accordingly creating chromium(III)-telluride-coated liquid metal (CT-LM) droplets via a simple self-assembly process.

View Article and Find Full Text PDF

When using navigation devices the "cognitive map" created in the user's mind is much more fragmented, incomplete and inaccurate, compared to the mental model of space created when reading a conventional printed map. As users become more dependent on digital devices that reduce orientation skills, there is an urgent need to develop more efficient navigation systems that promote orientation skills. This paper proposes to consider brain processes for creating more efficient maps that use a network of optimally located cardinal lines and landmarks organized to support and stabilize the neurocognitive structures in the brain that promote spatial orientation.

View Article and Find Full Text PDF

Cryogenic sample eject system for electron paramagnetic resonance spectrometers.

J Magn Reson

December 2024

Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA. Electronic address:

We present a fully automated cryogenic sample insertion and ejection system for use with low-temperature EPR probes. We show how the system can be implemented on a conventional EPR spectrometer and that ejection and insertion is reliably possible at temperatures down to 10 K. Furthermore, we investigate the glass properties of a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!