Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

J Chem Theory Comput

Department of Chemistry, Seoul National University, Seoul 151-747, S. Korea.

Published: February 2012

Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct2006727DOI Listing

Publication Analysis

Top Keywords

enzyme reaction
8
acetylcholinesterase kinetics
8
enzyme
6
internal diffusion-controlled
4
diffusion-controlled enzyme
4
reaction acetylcholinesterase
4
kinetics
4
kinetics acetylcholinesterase
4
acetylcholinesterase enzyme
4
enzyme high
4

Similar Publications

Introduction: Varicella-Zoster virus (VZV) is a highly contagious alpha-herpes virus. The diagnosis of chickenpox remains a difficult task especially in cases of breakthrough chickenpox, so the development of reliable laboratory tests is necessary. The simplest and most sensitive serological test for detecting antibodies in human and animal sera is the passive hemagglutination reaction (PHAR).

View Article and Find Full Text PDF

Rapid detection assays for Bacillus anthracis, Yersinia pestis, and Brucella spp. via triplex-recombinase polymerase amplification.

Mol Biol Rep

January 2025

State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.

Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.

View Article and Find Full Text PDF

Nanoparticle-assisted PCR: fundamentals, mechanisms, and forensic implications.

Int J Legal Med

January 2025

Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.

Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency.

View Article and Find Full Text PDF

Effects of vitamin B supply on cellular processes of the facultative vitamin B consumer .

Appl Environ Microbiol

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.

Vitamin B (cobalamin, herein B) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B is often scarce, largely because only few prokaryotes can synthesize B and are thus considered B-prototrophs. B-auxotrophy is mostly manifested by the absence of the B-independent methionine synthase, MetE.

View Article and Find Full Text PDF

The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!