Unlabelled: The only definitive treatment for end stage renal disease is renal transplantation, however the current shortage of organ donors has resulted in a long list of patients awaiting transplant. Whole organ engineering based on decellularization/recellularization techniques has provided the possibility of creating engineered kidney constructs as an alternative to donor organ transplantation. Previous studies have demonstrated that small units of engineered kidney are able to maintain function in vivo. However, an engineered kidney with sufficient functional capacity to replace normal renal function has not yet been developed. One obstacle in the generation of such an organ is the development of effective cell seeding methods for robust colonization of engineered kidney scaffolds. We have developed cell culture methods that allow primary porcine renal cells to be efficiently expanded while maintaining normal renal phenotype. We have also established an effective cell seeding method for the repopulation of acellular porcine renal scaffolds. Histological and immunohistochemical analyses demonstrate that a majority of the expanded cells are proximal tubular cells, and the seeded cells formed tubule-like structures that express normal renal tubule phenotypic markers. Functional analysis revealed that cells within the kidney construct demonstrated normal renal functions such as re-adsorption of sodium and protein, hydrolase activity, and production of erythropoietin. These structural and functional outcomes suggest that engineered kidney scaffolds may offer an alternative to donor organ transplant.
Statement Of Significance: Kidney transplantation is the only definitive treatment for end stage renal disease, however the current shortage of organ donors has limited the treatment. Whole organ engineering based on decellularization/recellularization techniques has provided the possibility of creating engineered kidney constructs as an alternative to donor organ transplantation. While previous studies have shown that small units of engineered kidneys are able to maintain function in animal studies, engineering of kidneys with sufficient functional capacity to replace normal renal function is still challenging due to inefficient cell seeding methods. This study aims to establish an effective cell seeding method using pig kidney cells for the repopulation of acellular porcine kidney scaffolds, suggesting that engineered kidneys may offer an alternative to donor organ transplant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.11.026 | DOI Listing |
Ultrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFNephrol Nurs J
January 2025
Clinical Applications and Product Innovation Staff Engineer, Fresenius Medical Care, Lawrence, MA.
Citrate anticoagulation offers a targeted and effective method for preventing clotting in extracorporeal blood circuits during dialysis. This article reviews the mechanisms, benefits, risks, and best practices associated with citrate anticoagulation, emphasizing its growing role within critical care and dialysis.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).
Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.
Biomed Opt Express
January 2025
Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.
Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China.
Masked cryptic kidney injury (MCKI), an early stage of acute kidney injury (AKI), is challenging to detect and diagnose, especially in the modern context where toxic substances, such as surfactants, are increasingly misused. Consequently, there is an urgent need for methods for the visual diagnosis of MCKI. In this study, we synthesized environmentally friendly spirulina-derived carbon dots (SpiCDs) using spirulina as a biobased raw material through a simple hydrothermal process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!