Background: A number of engineered nanoparticles induce autophagy, the main catabolic pathway that regulates bulk degradation of cytoplasmic material by the lysosomes. Depending on the specific physico-chemical properties of the nanomaterial, however, nanoparticle-induced autophagy may have different effects on cell physiology, ranging from enhanced autophagic degradation to blockage of autophagic flux. To investigate the molecular mechanisms underlying the impact of nanoparticle charge on the nature of the autophagic response, we tested polystyrene nanoparticles (50 nm) with neutral, anionic, and cationic surface charges.

Results: We found all polystyrene nanoparticles investigated in this study to activate autophagy. We showed that internalization of polystyrene nanoparticles results in activation of the transcription factor EB, a master regulator of autophagy and lysosome biogenesis. Autophagic clearance, however, was observed to depend specifically on the charge of the nanoparticles. Particularly, we found that the autophagic response to polystyrene nanoparticles presenting a neutral or anionic surface involves enhanced clearance of autophagic cargo. Cell exposure to polystyrene nanoparticles presenting a cationic surface, on the other hand, results in transcriptional upregulation of the pathway, but also causes lysosomal dysfunction, ultimately resulting in blockage of autophagic flux.

Conclusions: This study furthers our understanding of the molecular mechanisms that regulate the autophagic response to nanoparticles, thus contributing essential design criteria for engineering benign nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657241PMC
http://dx.doi.org/10.1186/s12951-015-0149-6DOI Listing

Publication Analysis

Top Keywords

polystyrene nanoparticles
24
autophagic response
16
autophagic
9
nanoparticles
9
response polystyrene
8
transcription factor
8
blockage autophagic
8
molecular mechanisms
8
neutral anionic
8
cationic surface
8

Similar Publications

A particle counting immunosensor for the sensitive detection of ochratoxin A via click chemistry-mediated signal amplification.

J Hazard Mater

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China. Electronic address:

The existence of ochratoxin A (OTA) in agricultural products poses significant threats to human health and environment, underscoring the critical need for its prompt and precise quantification. A particle counting immunosensor for the highly sensitive detection of OTA was presented, employing SiO@CuO nanoparticles to facilitate click chemistry. The quantity of SiO@CuO nanoparticles, and consequently the Cu²⁺ concentration, can be directly altered through the immune response involving OTA.

View Article and Find Full Text PDF

Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

The increasing prevalence of nanoplastics (NPs) in the environment, particularly polystyrene (PS) nanoparticles, raises concerns regarding their potential impact on human and animal health. Given their small size, NPs can cross biological barriers and accumulate in organs, including those critical for immune functions. This study investigates the effects of short-term oral exposure to 100 and 500 nm PS NPs on the adaptive immune responses during viral infections in vivo, using vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV) as models.

View Article and Find Full Text PDF

Assessing the Efficacy of Pyrolysis-Gas Chromatography-Mass Spectrometry for Nanoplastic and Microplastic Analysis in Human Blood.

Environ Sci Technol

January 2025

Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.

Humans are constantly exposed to micro- and nanosized plastics (MNPs); however, there is still limited understanding of their fate within the body, partially due to limitations with current analytical techniques. The current study assessed the appropriateness of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis for the quantification of a range of polymers in human blood. An extraction protocol that reduced matrix interferences (false positives) of polyethylene (PE) and polyvinyl chloride (PVC) was developed and validated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!