Invasive fractional flow reserve (FFRinvasive), although gold standard to identify hemodynamically relevant coronary stenoses, is time consuming and potentially associated with complications. We developed and evaluated a new approach to determine lesion-specific FFR on the basis of coronary anatomy as visualized by invasive coronary angiography (FFRangio): 100 coronary lesions (50% to 90% diameter stenosis) in 73 patients (48 men, 25 women; mean age 67 ± 9 years) were studied. On the basis of coronary angiograms acquired at rest from 2 views at angulations at least 30° apart, a PC-based computational fluid dynamics modeling software used personalized boundary conditions determined from 3-dimensional reconstructed angiography, heart rate, and blood pressure to derive FFRangio. The results were compared with FFRinvasive. Interobserver variability was determined in a subset of 25 narrowings. Twenty-nine of 100 coronary lesions were hemodynamically significant (FFRinvasive ≤ 0.80). FFRangio identified these with an accuracy of 90%, sensitivity of 79%, specificity of 94%, positive predictive value of 85%, and negative predictive value of 92%. The area under the receiver operating characteristic curve was 0.93. Correlation between FFRinvasive (mean: 0.84 ± 0.11) and FFRangio (mean: 0.85 ± 0.12) was r = 0.85. Interobserver variability of FFRangio was low, with a correlation of r = 0.88. In conclusion, estimation of coronary FFR with PC-based computational fluid dynamics modeling on the basis of lesion morphology as determined by invasive angiography is possible with high diagnostic accuracy compared to invasive measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjcard.2015.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!