Oscillator Strength: How Does TDDFT Compare to EOM-CCSD?

J Chem Theory Comput

Gaussian, Inc., 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States, and Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06511, United States.

Published: February 2011

In this work, we compare a large variety of density functionals against the equation of motion coupled cluster singles and doubles (EOM-CCSD) method for the calculation of oscillator strengths. Valence and Rydberg states are considered for a test set composed of 11 small organic molecules. In our previous work, the same systems and methods were tested against experimental results for the excitation energies. The results from this investigation confirm our previous findings, i.e., that there is a large difference between the functionals. For the oscillator strength, the average best agreement with EOM-CCSD is provided by CAM-B3LYP followed by LC-ωPBE and, to a lesser extent, B3P86 and LC-BLYP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct100662nDOI Listing

Publication Analysis

Top Keywords

oscillator strength
8
strength tddft
4
tddft compare
4
compare eom-ccsd?
4
eom-ccsd? work
4
work compare
4
compare large
4
large variety
4
variety density
4
density functionals
4

Similar Publications

Cavity correlations and the onset of charge ordering at charged interfaces: A modified Poisson-Fermi approach.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.

Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.

View Article and Find Full Text PDF

In this study, the radiative and nonradiative decay pathways from the first singlet excited states (denoted as S) of three bithiophene-fused isoquinolines were investigated by using the mixed-reference spin-flip time-dependent density functional theory approach. These isoquinolines, which are prepared via [2 + 2 + 2] cycloaddition reactions between three types of bithiophene-linked diynes and nitriles, exhibit different fluorescence quantum yields in response to the positions of their sulfur atoms. The decay processes, including the fluorescence emission and internal conversion, were considered.

View Article and Find Full Text PDF

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!