Goal: The purpose of this study is to improve the accuracy of interventional catheter guidance during intracardiac procedures. Specifically, the use of preprocedural magnetic resonance roadmap images for interventional guidance has limited anatomical accuracy due to intraprocedural respiratory motion of the heart. Therefore, we propose to build a novel respiratory motion model to compensate for this motion-induced error during magnetic resonance imaging (MRI)-guided procedures.

Methods: We acquire 2-D real-time free-breathing images to characterize the respiratory motion, and build a smooth motion model via registration of 3-D prior roadmap images to the real-time images within a novel principal axes frame of reference. The model is subsequently used to correct the interventional catheter positions with respect to the anatomy of the heart.

Results: We demonstrate that the proposed modeling framework can lead to smoother motion models, and potentially lead to more accurate motion estimates. Specifically, MRI-guided intracardiac ablations were performed in six preclinical animal experiments. Then, from retrospective analysis, the proposed motion modeling technique showed the potential to achieve a 27% improvement in ablation targeting accuracy.

Conclusion: The feasibility of a respiratory motion model-based correction framework has been successfully demonstrated.

Significance: The improvement in ablation accuracy may lead to significant improvements in success rate and patient outcomes for MRI-guided intracardiac procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2015.2451517DOI Listing

Publication Analysis

Top Keywords

respiratory motion
20
mri-guided intracardiac
12
motion
9
motion modeling
8
interventional catheter
8
intracardiac procedures
8
magnetic resonance
8
roadmap images
8
motion model
8
improvement ablation
8

Similar Publications

Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.

View Article and Find Full Text PDF

Comparing the Therapeutic Impact of Strain-Counterstrain and Exercise on Low Back Myofascial Pain Syndrome: A Randomized Trial.

J Multidiscip Healthc

January 2025

Program of Physical Therapy, Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia.

Background: Background: Strain-Counterstrain (SCS) therapy is a manual therapeutic technique used to treat myofascial pain by addressing tender points through passive positioning. Despite anecdotal evidence, limited peer-reviewed research supports its efficacy in chronic low back pain (LBP). This study evaluates the effects of SCS combined with exercise on pain severity, lumbar range of motion (ROM), and functional disability in patients with chronic LBP.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Third trimester fetal 4D flow MRI with motion correction.

Magn Reson Med

January 2025

Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.

Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!