Dependent on maternal (e.g. genetic, age) and exposure (frequency, quantity, and timing) variables, the effects of prenatal alcohol exposure on the developing fetus are known to vary widely, producing a broad range of morphological anomalies and neurocognitive deficits in offspring, referred to as fetal alcohol spectrum disorders (FASD). Maternal drinking during pregnancy remains a leading risk factor for the development of intellectual disabilities in the US. While few functional findings exist today that shed light on the mechanisms responsible for the observed impairments in individuals with FASD, animal models consistently report deleterious effects of early alcohol exposure on GABA-ergic inhibitory pathways. The post-motor beta rebound (PMBR), a transient increase of 15-30 Hz beta power in the motor cortex that follows the termination of movement, has been implicated as a neural signature of GABA-ergic inhibitory activity. Further, PMBR has been shown to be a reliable predictor of age in adolescents. The present study sought to investigate any differences in the development of PMBR between FASD and control groups. Beta event-related de-synchronization (ERD) and movement-related gamma synchronization (MRGS), although not clearly linked to brain maturation, were also examined. Twenty-two participants with FASD and 22 age and sex-matched controls (12-22 years old) underwent magnetoencephalography scans while performing an auditory oddball task, which required a button press in response to select target stimuli. The data surrounding the button presses were localized to the participants' motor cortices, and the time courses from the locations of the maximally evoked PMBR were subjected to wavelet analyses. The subsequent analysis of PMBR, ERD, and MRGS revealed a significant interaction between group and age in their effects on PMBR. While age had a significant effect on PMBR in the controls, no simple effects of age were detected in the FASD group. The FASD group additionally displayed decreased overall ERD levels. No group or age effects on MRGS were detected. The described findings provide further evidence for broad impairments in inhibitory processes in adolescents with FASD, possibly related to aberrant development of GABA-ergic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589820PMC
http://dx.doi.org/10.1016/j.nicl.2015.09.005DOI Listing

Publication Analysis

Top Keywords

aberrant development
8
beta rebound
8
fetal alcohol
8
alcohol spectrum
8
spectrum disorders
8
alcohol exposure
8
gaba-ergic inhibitory
8
group age
8
age effects
8
fasd group
8

Similar Publications

Developmental basis of natural tooth shape variation in cichlid fishes.

Naturwissenschaften

January 2025

Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates.

View Article and Find Full Text PDF

Background: There are no disease modifying therapies for Huntington's disease (HD), a rare but fatal genetic neurodegenerative condition. To develop and test new management strategies, a better understanding of the mechanisms underlying HD progression is needed. Aberrant changes in thalamo-cortical and striato-cerebellar circuitry have been observed in asymptomatic HD, along with transient enlargement of the dentate nucleus.

View Article and Find Full Text PDF

Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia.

Brief Bioinform

November 2024

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis.

View Article and Find Full Text PDF

Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.

Adv Sci (Weinh)

January 2025

Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.

Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.

View Article and Find Full Text PDF

ZNF165: A Pan-Cancer Biomarker with Prognostic and Therapeutic Potential.

Protein Pept Lett

January 2025

Scientific Research Center, Beijing ChosenMed Clinical Laboratory Co., Ltd. 101, 1F, Building 3, No.156 Jinghai 4th Road, Beijing Economic and Technological Development Zone, Beijing, 100176, China.

Background: The role of ZNF165 in only a few tumors has been reported. ZNF165 plays an important role in liver cancer, gastric cancer, and breast cancer, especially in regulating the immune microenvironment, promoting tumor cell proliferation and migration, and serving as a potential target for immunotherapy.

Objective: This study aimed to enhance an understanding of how the ZNF165 gene functions and influences cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!