3DRISM Multigrid Algorithm for Fast Solvation Free Energy Calculations.

J Chem Theory Comput

Nanoscience Division, Department of Physics, Scottish Universities Physics Alliance (SUPA), Strathclyde University, Room JA 6.10, John Anderson Building 107, Rottenrow East Glasgow, United Kingdom G4 0NG.

Published: June 2012

In this paper we present a fast and accurate method for modeling solvation properties of organic molecules in water with a main focus on predicting solvation (hydration) free energies of small organic compounds. The method is based on a combination of (i) a molecular theory, three-dimensional reference interaction sites model (3DRISM); (ii) a fast multigrid algorithm for solving the high-dimensional 3DRISM integral equations; and (iii) a recently introduced universal correction (UC) for the 3DRISM solvation free energies by properly scaled molecular partial volume (3DRISM-UC, Palmer et al., J. Phys.: Condens. Matter2010, 22, 492101). A fast multigrid algorithm is the core of the method because it helps to reduce the high computational costs associated with solving the 3DRISM equations. To facilitate future applications of the method, we performed benchmarking of the algorithm on a set of several model solutes in order to find optimal grid parameters and to test the performance and accuracy of the algorithm. We have shown that the proposed new multigrid algorithm is on average 24 times faster than the simple Picard method and at least 3.5 times faster than the MDIIS method which is currently actively used by the 3DRISM community (e.g., the MDIIS method has been recently implemented in a new 3DRISM implicit solvent routine in the recent release of the AmberTools 1.4 molecular modeling package (Luchko et al. J. Chem. Theory Comput. 2010, 6, 607-624). Then we have benchmarked the multigrid algorithm with chosen optimal parameters on a set of 99 organic compounds. We show that average computational time required for one 3DRISM calculation is 3.5 min per a small organic molecule (10-20 atoms) on a standard personal computer. We also benchmarked predicted solvation free energy values for all of the compounds in the set against the corresponding experimental data. We show that by using the proposed multigrid algorithm and the 3DRISM-UC model, it is possible to obtain good correlation between calculated and experimental results for solvation free energies of aqueous solutions of small organic compounds (correlation coefficient 0.97, root-mean-square deviation <1 kcal/mol).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct200815vDOI Listing

Publication Analysis

Top Keywords

multigrid algorithm
24
solvation free
16
free energies
12
small organic
12
organic compounds
12
3drism
8
algorithm
8
free energy
8
fast multigrid
8
proposed multigrid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!