Bipolar Host Materials for Organic Light-Emitting Diodes.

Chem Rec

School of Chemical Engineering Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu Suwon, Gyeonggi, 440-746, Republic of Korea.

Published: February 2016

It is important to balance holes and electrons in the emitting layer of organic light-emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light-emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light-emitting diodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201500221DOI Listing

Publication Analysis

Top Keywords

host materials
16
organic light-emitting
16
light-emitting diodes
16
materials organic
8
holes electrons
8
emitting layer
8
bipolar hosts
8
bipolar host
4
materials
4
organic
4

Similar Publications

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing.

View Article and Find Full Text PDF

Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication.

Front Cell Infect Microbiol

January 2025

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.

Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!