We represented protein backbone potential as a Fourier series. The parameters of the backbone dihedral potential were initialized to random values and optimized by Monte Carlo simulations so that generated native-like loop decoys had a lower energy than non-native decoys. The low energy regions of the optimized backbone potential were consistent with observed Ramachandran plots derived from crystal structures. The backbone potential was then used for the prediction of loop conformations (OSCAR-loop) combining with the previously described OSCAR force field, which has been shown to be very accurate in side chain modeling. As a result, the accuracy of OSCAR-loop was improved by local energy minimization based on the complete force field. The average accuracies were 0.40, 0.70, 1.10, 2.08, and 3.58 Å for 4, 6, 8, 10, and 12-residue loops, respectively, with each size being represented by 325 to 2809 targets. The accuracy was better than that of other loop modeling algorithms for short loops (<10 residues). For longer loops, the prediction accuracy was improved by concurrently sampling with a fragment-based method, Spanner. OSCAR-loop is available for download at http://sysimm.ifrec.osaka-u.ac.jp/OSCAR/ .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct300131p | DOI Listing |
Macromol Rapid Commun
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56124, Italy.
This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China. Electronic address:
Maintenance and exit from pluripotency of embryonic stem cells (ESCs) are controlled by highly coordinated processes of protein synthesis and ribosome biogenesis (RiBi). ESCs are characterized by low rates of global protein synthesis and high levels of RiBi. Transient reduction of RiBi is a characteristic molecular event during the exit from pluripotency, of which the regulatory mechanism is unclear.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Department of Surgery, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
Background: Nosocomial pneumonia is common in trauma patients and associated with an adverse prognosis. We recently externally validated and recalibrated an existing formula to predict nosocomial pneumonia risk. Identifying more potential predictors could aid in a more accurate prediction of nosocomial pneumonia risk in level-1 trauma patients.
View Article and Find Full Text PDFNeurol Int
December 2024
Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments.
View Article and Find Full Text PDFNeuroSci
December 2024
Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland.
Background: Intraoperative neuromonitoring (IONM) is crucial for the safety of scoliosis surgery, providing real-time feedback on the spinal cord and nerve function, primarily through motor-evoked potentials (MEPs). The choice of anesthesia plays a crucial role in influencing the quality and reliability of these neuromonitoring signals. This systematic review evaluates how different anesthetic techniques-total intravenous anesthesia (TIVA), volatile anesthetics, and regional anesthesia approaches such as Erector Spinae Plane Block (ESPB), spinal, and epidural anesthesia-affect IONM during scoliosis surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!