YfiBNR is a tripartite signalling system in Pseudomonas aeruginosa that modulates intracellular c-di-GMP levels in response to signals received in the periplasm. YfiB is an outer membrane lipoprotein and presumed sensor protein that sequesters the repressor protein YfiR. To provide insights into YfiBNR function, we have determined three-dimensional crystal structures of YfiB and YfiR from P. aeruginosa PAO1 alone and as a 1:1 complex. A YfiB(27-168) construct is predominantly dimeric, whereas a YfiB(59-168) is monomeric, indicating that YfiB can dimerize via its N-terminal region. YfiR forms a stable complex with YfiB(59-168), while the YfiR binding interface is obstructed by the N-terminal region in YfiB(27-168). The YfiB-YfiR complex reveals a conserved interaction surface on YfiR that overlaps with residues predicted to interact with the periplasmic PAS domain of YfiN. Comparison of native and YfiR-bound structures of YfiB suggests unwinding of the N-terminal linker region for attachment to the outer membrane. A model is thus proposed for YfiR sequestration at the outer membrane by YfiB. Our work provides the first detailed insights into the interaction between YfiB and YfiR at the molecular level and is a valuable starting point for further functional and mechanistic studies of the YfiBNR signalling system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655355PMC
http://dx.doi.org/10.1038/srep16915DOI Listing

Publication Analysis

Top Keywords

outer membrane
12
yfir
8
pseudomonas aeruginosa
8
aeruginosa pao1
8
signalling system
8
structures yfib
8
yfib yfir
8
n-terminal region
8
yfib
7
structural insights
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.

Virulence

December 2025

Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.

is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!