High energy regions of molecular electronic states are largely characterized by the nature and involvement of Rydberg states. Whereas there are a number of observed dynamical processes that are due to interactions between Rydberg and valence states, reports on the corresponding effect of Rydberg-Rydberg state interaction in the literature are scarce. Here we report a detailed characterization of the effects of interactions between two Rydberg states on photofragmentation processes, for a hydrogen halide molecule. Perturbation effects, showing as rotational line shifts, intensity alterations and line-broadenings in REMPI spectra of HI, for two-photon resonance excitations to the j(3)Σ(-)(0(+); v' = 0) and k(3)Π1(v' = 2) Rydberg states, are analyzed. The data reveal pathways of further photofragmentation processes involving photodissociation, autoionization and photoionization affected by the Rydberg-Rydberg state interactions as well as the involvement of other states, close in energy. Detailed mechanisms of the involved processes are proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp06185g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!