What is the central question of this study? A high-concentrate (HC) diet results in damage to the hindgut mucosa. The aim of the study was to investigate the status of epithelial proliferation in the hindgut mucosa of goats with subacute ruminal acidosis and, simultaneously, to evaluate prostaglandin E2 synthesis and the downstream signalling pathways. What is the main finding and its importance? The downregulation of local prostaglandin E2 synthesis and its downstream signalling pathway are involved in the process of inhibiting epithelial proliferation in the hindgut epithelium of HC-fed goats. Our results provide new insight into the relationship between abnormal fermentation in the hindgut and damage to the intestinal mucosal barrier. Our previous data demonstrated that feeding a high-concentrate (HC) diet to lactating goats for a long time causes severe damage to the hindgut mucosa and parallels the activation of cell apoptosis and local oxidative stress. In the present study, changes in production of prostaglandin E2 (PGE2 ) and its signalling pathway were evaluated in the process of epithelial barrier disruption in the hindgut. Twelve goats in mid-lactation were randomly assigned to either a HC diet group or a low-concentrate (LC) diet group for 10 weeks. Cell proliferation markers, cyclooxygenase-2 activity, PGE2 content and the relative signalling pathway, including CREB and AKT, were analysed by enzyme-linked immunosorbent assay and Western blot, respectively. The mRNA and protein expressions of MKI67 and CCND2 (two proliferation markers) were significantly decreased in the caecal mucosa of HC- compared with LC-fed goats (P < 0.05). The protein content of interleukin-10 and β-defensin in the caecal mucosa was also downregulated in HC-fed goats (P < 0.05). The HC-fed goats showed a tendency to a decrease in cyclooxygenase-2 enzyme activity (P = 0.081) and a significant decrease of local PGE2 content and EP4 (PGE2 receptor) protein expression in caecal mucosa (P < 0.05). Moreover, the protein abundance of p-CREB (P = 0.069) and p-AKT (P < 0.05) and the mRNA expression of epidermal growth factor receptor (P < 0.05) were downregulated in caecal mucosa of HC- compared with LC-fed goats. These results indicate that a reduction in epithelial cell proliferation was partly responsible for the damage to the epithelial barrier, which might be associated with the downregulation of PGE2 synthesis and its downstream signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP085256DOI Listing

Publication Analysis

Top Keywords

signalling pathway
16
caecal mucosa
16
high-concentrate diet
12
hindgut mucosa
12
synthesis downstream
12
downstream signalling
12
hc-fed goats
12
goats
9
lactating goats
8
damage hindgut
8

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Unlabelled: The ECM is a complex and dynamic meshwork of proteins that forms the framework of all multicellular organisms. Protein interactions within the ECM are critical to building and remodeling the ECM meshwork, while interactions between ECM proteins and cell surface receptors are essential for the initiation of signal transduction and the orchestration of cellular behaviors. Here, we report the development of MatriCom, a web application ( https://matrinet.

View Article and Find Full Text PDF

SMAD4 Regulates the Expression of LCK Affecting Chimeric Antigen Receptor-T Cells Proliferation Through PI3K/Akt Signaling Pathway.

J Cell Physiol

January 2025

Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.

Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!