This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4032053DOI Listing

Publication Analysis

Top Keywords

volumetric heating
16
thermomechanical stress
12
cryopreservation vitrification
12
stress cryopreservation
8
cryogenic protocol
8
rewarming rates
8
underlying principles
8
size limit
8
lead structural
8
structural damage
8

Similar Publications

In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

This paper provides a detailed analysis of the operation of representative forging tools (in the context of using various surface engineering techniques) used in the process of the hot forging of nickel-chromium steel elements. The influence of the microstructure and hardness of the material on the durability of the tools is also discussed, which is important for understanding the mechanisms of their wear. The research showed that the standard tools used in the process (only after nitriding) as a reference point worked for the shortest period, making an average of about 1400 forgings.

View Article and Find Full Text PDF

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

Nano Lett

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Background: Quantitative real-time MRI-based temperature mapping techniques are hampered by abdominal motion. Intrascan motion can be reduced by rapid acquisition sequences such as 2D echo planar imaging (EPI), and inter-scan organ displacement can be compensated by image processing such as optical flow (OF) algorithms. However, motion field estimation can be seriously affected by local variation of signal intensity on magnitude images inherent to tissue heating, potentially leading to erroneous temperature estimates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!