Use of quantum dots as mass and fluorescence labels in microarray biosensing.

Talanta

Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare, 20131 Milano, Italy. Electronic address:

Published: January 2016

In this work, we demonstrate the efficacy of a Quantum Dot (QD) mass label strategy to enhance sensitivity in an interferometric technique called interferometric reflectance imaging sensor (IRIS). This biomass detection platform confers the advantage of absolute mass quantification and lower cost, easily implementable equipment. We discuss the advantages of this label when used in parallel with fluorescence detection. QDs represent a unique opportunity to improve sensitivity in both mass-label detection methods due to their large detectable mass, as well as in fluorescence detection, as they fluoresce without quenching. Streptavidin-conjugated QDs (SA-QDs) have been investigated as such a dual-role probe because of their large shape and mass, their 655nm emission peak for fluorescent detection platforms, and their robust insensitivity to photobleaching and quenching. In particular we explored their dual role in a microarrays immunoassay designed to detect antibodies against β-lactoglobulin, a common milk allergen. The SA-QDs formed a large detectable monolayer of 6.2ng/mm(2) in the saturation conditions, a mass signal corroborated by previous studies by Platt et al..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2015.10.012DOI Listing

Publication Analysis

Top Keywords

fluorescence detection
8
large detectable
8
mass
6
detection
5
quantum dots
4
dots mass
4
mass fluorescence
4
fluorescence labels
4
labels microarray
4
microarray biosensing
4

Similar Publications

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

A lanthanide ion-based metal-organic framework (Eu-TATAB nanorods) was designed and synthesized as an effective tri-mode nanoprobe for sensitive and portable detection of ethanol content in a water-ethanol mixture. The assay was based on the responsive properties of Eu-TATAB nanorods to ethanol stimulus and their adaptive encapsulation capability towards optically active lanthanides. With the addition of ethanol to the Eu-TATAB nanorods, the structure was destroyed, resulting in a decrease in luminescence, electrochemiluminescence, and ultraviolet-visible spectrophotometric signals by perturbing energy transfer in the Eu-TATAB nanorods.

View Article and Find Full Text PDF

Fibroblast activation protein peptide-targeted NIR-I/II fluorescence imaging for stable and functional detection of hepatocellular carcinoma.

Eur J Nucl Med Mol Imaging

January 2025

Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.

Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!