Platycodin D induces apoptosis and triggers ERK- and JNK-mediated autophagy in human hepatocellular carcinoma BEL-7402 cells.

Acta Pharmacol Sin

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.

Published: December 2015

Aim: Platycodin D, the main saponin isolated from Chinese herb Platycodonis Radix, exhibits anticancer activities against various cancer cell lines. Here we evaluated its anticancer action against human hepatocellular carcinoma cells in vitro and in vivo, and elucidated the relationship between platycodin D-induced apoptosis and autophagy.

Methods: The viability of human hepatocellular carcinoma BEL-7402 cells was evaluated with MTT assay, and the apoptosis was examined using Annexin V/PI and Hoechst 33342 staining assays. Monodansylcadaverine (MDC) staining was used to label autophagic vacuoles. The proteins were detected using Western blot analysis. For studying its anticancer action in vivo, platycodin D (5 and 10 mg· kg(-1)·d(-1)) was intraperitoneally injected to BEL-7402-bearing mice for 21 days.

Results: Platycodin D (5-40 μmol/L) inhibited the cell proliferation in vitro with IC50 values of 37.70±3.99, 24.30±2.30 and 19.70±2.36 μmol/L at 24, 48 and 72 h, respectively. Platycodin D (5-20 μmol/L) dose-dependently increased BEL-7402 cell apoptosis, increased the Bax/Bcl-2 ratio and the levels of cleaved PARP and cleaved caspase-3, and decreased the level of Bcl-2. Furthermore, platycodin D (5-20 μmol/L) induced autophagy in BEL-7402 cells, as evidenced by formation of cytoplasmic vacuoles, increased amounts of LC3-II, and increased numbers of MDC-positive cells. Pretreatment with the autophagy inhibitor chloroquine (5 μmol/L) or BAF (50 nmol/L) significantly enhanced platycodin D-induced proliferation inhibition and apoptosis. Moreover, platycodin D (20 μmol/L) activated the ERK and JNK pathways in BEL-7402 cells, and simultaneous blockage of the two pathways effectively suppressed platycodin D-induced autophagy and enhanced platycodin D-induced apoptosis. In BEL-7402-bearing mice, platycodin D (10 mg·kg(-1)•d(-1)) significantly reduced relative tumor volume with decreased body weight.

Conclusion: Platycodin D not only inhibits the proliferation of BEL-7402 cells but also suppresses BEL-7402 xenograft tumor growth. Platycodin D-induced cell proliferation inhibition and apoptosis are amplified by co-treatment with autophagy inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816242PMC
http://dx.doi.org/10.1038/aps.2015.99DOI Listing

Publication Analysis

Top Keywords

bel-7402 cells
20
platycodin d-induced
20
platycodin
14
human hepatocellular
12
hepatocellular carcinoma
12
carcinoma bel-7402
8
anticancer action
8
d-induced apoptosis
8
bel-7402-bearing mice
8
cell proliferation
8

Similar Publications

Based on the biologically active heterocycle quinoline, we successfully synthesized a series of quinoline-based dihydrazone derivatives (3a-3d). H NMR, C NMR, ESI-HRMS, IR, element analysis, UV/Vis spectroscopy and fluorescence spectroscopy were performed to comprehensively characterize their chemical structures, spectral properties and stability. Nitrosamine impurities were not detected in 3a-3d, and the systemic toxicological assessment indicated that the toxicity of 3a-3d was lower.

View Article and Find Full Text PDF

In Vitro Investigation of the Anti-Hepatocellular Carcinoma Activity of Peptides Derived From Quinoa (Chenopodium quinoa Willd) Bran.

Plant Foods Hum Nutr

January 2025

Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China.

Article Synopsis
  • Hepatocellular carcinoma (HCC) is a common and aggressive cancer with high recurrence rates, making new treatment options crucial.
  • Quinoa bran protein hydrolysate (QBPP) has been found to effectively inhibit the growth of HCC cells while showing little toxicity to normal liver cells.
  • QBPP works by inducing apoptosis and preventing HCC cell migration, suggesting it could be a promising dietary supplement for HCC prevention and treatment.
View Article and Find Full Text PDF

Deficiency of the histone H3K36 methyltransferase SETD2 inhibits the proliferation and migration of hepatocellular carcinoma cells.

J Cancer

October 2024

Department of Oncology, National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. SETD2, the only known methyltransferase catalyzes the trimethylation of histone H3 lysine 36 (H3K36), has been reported to be associated with several cancers. However, the function of SETD2 in HCC is unclear.

View Article and Find Full Text PDF

Synthesis, characterization, antiproliferative activity and DNA binding calculation of substituted-phenyl-terpyridine copper(II) nitrate complexes.

J Inorg Biochem

October 2023

School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China. Electronic address:

Ten 4'- (R-phenyl) -2,2': 6', 2' - terpyridine ligands (R = hydrogen (L1), hydroxyl (L2), methoxyl (L3), methylsulfonyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), and iodo (L10)) were synthesized. The reaction of these ligands with copper(II) nitrate led to complexes 1-10. The characterization of 1-10 was carried out by means of mass spectrometry, elemental analysis, infrared spectroscopy and X-ray single crystal diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!