Planar microfluidic devices coupled with modern electronic pressure control have allowed gas chromatography (GC) practitioners to easily manipulate chromatographic systems to achieve heart cut and back-flushing configurations. These planar microfluidic devices have enhanced the connectivity between different components of GC instrumentation and have improved the inertness and minimised system dead volumes compared to classical chromatographic unions and valves. In the present contribution the setup and configuration of two multidimensional GC (MDGC) platforms is described for achieving the separation and quantification of trace level target C6-C8 alkylbenzenes in styrene monomer and Isoparaffin™ solvents, using flame ionisation detection (FID). The performance of these MDGC platforms indicated excellent retention time (0.2% relative standard deviation, RSD) and peak area repeatability (1% RSD) for all analytes of interest. The limit of detection (LOD) was 0.8 mg kg(-1) for benzene in styrene monomer, and 2.4-2.8 mg kg(-1) for C6-C8 alkylbenzenes such as benzene, toluene, ethylbenzene and xylene in Isoparaffin™ solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2015.10.027 | DOI Listing |
Unlabelled: Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO -coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid.
View Article and Find Full Text PDFLab Chip
December 2024
Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
The gold standard of microfluidic fabrication techniques, SU-8 patterning, requires photolithography equipment and facilities and is not suitable for 3D microfluidics. A 3D printer is more convenient and may achieve high resolutions comparable to conventional photolithography, but only with select materials. Alternatively, 5-axis computer numerical control (CNC) micro-milling machines can efficiently prototype structures with high resolutions, high aspect ratios, and non-planar geometries from a variety of materials.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Group of Electrical Engineering of Paris (GeePs), Sorbonne Université, CNRS UMR8507, 75005 Paris, France.
Rapid detection of a biological agent is essential to anticipate a threat to the protection of biodiversity and ecosystems. Our goal is to miniaturize a magnetic pathogen detection system in order to fabricate an efficient and portable system. The detection device is based on flat, multilayer coils associated with microfluidic structures to detect magnetic nanoparticles linked to pathogen agents.
View Article and Find Full Text PDFAdv Funct Mater
August 2024
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401; Department of Biology, College of Arts and Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA 27412.
Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab-on-chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi-planar structures.
View Article and Find Full Text PDFSoft Matter
October 2024
Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
Coexistence of lipid domains in cell membranes is associated with vital biological processes. Here, we investigate two such membranes: a multi-component membrane composed of DOPC and DPPC lipids with gel and fluid separated domains, and a single component membrane composed of PMPC lipids forming ripples. We characterize their mechanical properties below their melting point, where ordered and disordered regions coexist, and above their melting point, where they are in fluid phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!