Gas-phase acidities and basicities were calculated for 64 neutral bases (covering the scale from 139.9 kcal/mol to 251.9 kcal/mol) and 53 neutral acids (covering the scale from 299.5 kcal/mol to 411.7 kcal/mol). The following methods were used: AM1, PM3, PM6, PDDG, G2, G2MP2, G3, G3MP2, G4, G4MP2, CBS-QB3, B1B95, B2PLYP, B2PLYPD, B3LYP, B3PW91, B97D, B98, BLYP, BMK, BP86, CAM-B3LYP, HSEh1PBE, M06, M062X, M06HF, M06L, mPW2PLYP, mPW2PLYPD, O3LYP, OLYP, PBE1PBE, PBEPBE, tHCTHhyb, TPSSh, VSXC, X3LYP. The addition of the Grimmes empirical dispersion correction (D) to B2PLYP and mPW2PLYP was evaluated, and it was found that adding this correction gave more-accurate results when considering acidities. Calculations with B3LYP, B97D, BLYP, B2PLYPD, and PBE1PBE methods were carried out with five basis sets (6-311G**, 6-311+G**, TZVP, cc-pVTZ, and aug-cc-pVTZ) to evaluate the effect of basis sets on the accuracy of calculations. It was found that the best basis sets when considering accuracy of results and needed time were 6-311+G** and TZVP. Among semiempirical methods AM1 had the best ability to reproduce experimental acidities and basicities (the mean absolute error (mae) was 7.3 kcal/mol). Among DFT methods the best method considering accuracy, robustness, and computation time was PBE1PBE/6-311+G** (mae = 2.7 kcal/mol). Four Gaussian-type methods (G2, G2MP2, G4, and G4MP2) gave similar results to each other (mae = 2.3 kcal/mol). Gaussian-type methods are quite accurate, but their downside is the relatively long computational time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct4003916 | DOI Listing |
Polymers (Basel)
December 2024
Department of Physics, Moscow State University, 119991 Moscow, Russia.
The effective use of polymer carbon dots (PCD) in various fields of science and technology requires a more detailed understanding of the mechanisms of their photoluminescence formation and change as a result of their interaction with the environment. In this study, PCD synthesized via a hydrothermal method from citric acid and ethylenediamine are studied in various solvents using FTIR spectroscopy, optical absorption spectroscopy, and photoluminescence spectroscopy. As a result of the analysis of the obtained dependencies of such PCD spectral characteristics as the photoluminescence FWHM, the photoluminescence quantum yield, the photoluminescence lifetime on the acidity and basicity of the solvent, a hypothesis was formulated on the formation mechanism of hydrogen bonds between the PCD surface groups and the molecules of the environment, and conclusions were made about the donor-acceptor nature of the synthesized PCD.
View Article and Find Full Text PDFChemistryOpen
January 2025
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Department of Chemistry, Ciudad Autónoma de Buenos Aires, 1113, Argentina.
Gem-diols are defined as organic molecules carrying two hydroxyl groups at the same carbon atom, which is the result of the nucleophilic addition of water to a carbonyl group. In this work, the generation of the hydrated or hemiacetal forms using pyridine- and imidazole-carboxaldehyde isomers in different chemical environments was studied by Nuclear Magnetic Resonance (NMR) recorded in different media and combined with theoretical calculations. The change in the position of aldehyde group in either the pyridine or the imidazole ring had a clear effect in the course of the hydration/hemiacetal generation reaction, which was favored in protic solvents mainly in the presence of methanol.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bharu, Malaysia.
As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Analogous to the aqueous solution where the pH of the solvent affects its multiple behaviors, the optical acidity and basicity of molten salts also greatly influence their thermophysical and thermochemical properties. In the study, we develop ion probes to quantitatively determine the acidity-basicity scale of molten NaCl-AlCl ( = 1.5-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!