Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic structure calculations. Models with and without explicit many-body polarization effects, known to be important in simulation of interfacial processes, are constructed. The models have been validated on pressure-density isotherms of bulk CO2 and adsorption in three metal-organic framework (MOF) materials. The present models appear to offer advantages over high quality fluid/liquid state potentials in describing CO2 interactions in interfacial environments where sorbates adopt orientations not commonly explored in bulk fluids. Thus, the nonpolar CO2-PHAST and polarizable CO2-PHAST* potentials are recommended for materials/interfacial simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct400549q | DOI Listing |
J Phys Chem Lett
January 2025
Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.
This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Handique Girls' College, Guwahati , 781001, Assam, India.
Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.
View Article and Find Full Text PDFAmino Acids
January 2025
Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!