High energy consumption and membrane fouling are important factors that limit the wide use of membrane bioreactor (MBR). In order to reduce energy consumption and delay the process of membrane fouling, the process of anaerobic baffled reactor (ABR)-MBR was used to treat domestic sewage. The structure of the process and conditions of nitrogen and phosphorus removal were optimized in this study. The results showed that energy consumption was reduced by 43% through optimizing the structure of ABR-MBR process. Meanwhile, the process achieved a high level of COD, NH: -N, TN and TP removal, with the average removal efficiencies of 91%, 85%, 76% and 86%, respectively. In addition, the added particulate media could effectively delay membrane fouling, while the formation process of membrane fouling was changed. The extracted amount of carbohydrates increased while the amount of proteins decreased. Finally, the potential was enhanced for the practical application of MBR.
Download full-text PDF |
Source |
---|
Bioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFNanoscale
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Common filter membranes for emulsion separation often require time-intensive preparation and extensive use of chemicals, necessitating a fast-processing and eco-friendly alternative. This study introduces a 2-layer stacked nylon mesh treated with surface diffuse atmospheric plasma (SDAP) for rapid and efficient emulsion separation. Commercial nylon mesh exhibited durable super-wetting properties after just 30 s of SDAP treatment, which was sufficient for effective emulsion separation.
View Article and Find Full Text PDFAnal Chem
January 2025
Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea.
Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Air Liquide, Brussels, Belgium. Electronic address:
The operation of a reverse osmosis (RO) system is often severely hindered by the deposition of inorganic scales such as calcium carbonate on the membrane surface. Mitigation of this scaling phenomenon requires suitable pH control strategies, with the use of strong mineral acids (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!