A CANON reactor with polymeric sponge as carrier was started by incubating sludge from another CANON reactor using synthetic inorganic ammonia-rich wastewater as raw water, and was operated at 30 degrees C +/- 1 degree C, pH 6.92-8.52. The precipitation on the surface of carriers was studied in this paper, including influence on nitrogen removal efficiency, causes for formation and composition. The results showed that: (1) the precipitation could influence the distribution of substrate to undermine the performance of CANON reactors; (2) the precipitation was calcium carbohydrate; (3) the production of precipitation may be a common result of four effects that were the regulatory effect of microorganisms on pH value, stripping effect, the role of extracellular polymers, adsorption of sponge and simultaneous chemical, biological reactions; (4) once the precipitation formed, it was difficult to recover to normal. Therefore, some measures are necessary to avoid precipitation, including: (1) raw water pretreatment to reduce the concentrations of Ca2 and Mg2. (2) ensuring short-cut nitrification stable, which could avoid increase of pH because of reduction of DO; (3) we can choose other carriers to reduce precipitation, which must ensure the optimal total nitrogen removal performance and stable short-cut nitrification.
Download full-text PDF |
Source |
---|
Eng Microbiol
March 2024
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.
View Article and Find Full Text PDFWater Res
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
In the completely autotrophic nitrogen removal over nitrite (CANON) process, the conflicting oxygen requirements of anammox and ammonium-oxidizing bacteria often lead to retardation in anammox activity. However, our study achieved stable nitrogen removal with a maximum capacity of 1096 g-N/m/d in a 20 m CANON reactor under long-term intensive aeration. The anammox bacteria unusually distributed in the outer layer of the biofilm and demonstrated remarkable oxygen tolerance.
View Article and Find Full Text PDFWater Sci Technol
July 2024
School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China E-mail:
The completely autotrophic nitrogen removal over nitrite (CANON) process is significantly hindered by prolonged start-up periods and unstable nitrogen removal efficiency. In this study, a novel umbrella basalt fiber (BF) carrier with good biological affinity and adsorption performance was used to initiate the CANON process. The CANON process was initiated on day 64 in a sequencing batch reactor equipped with umbrella BF carriers.
View Article and Find Full Text PDFSci Total Environ
January 2024
Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
The partial nitritation/anammox (PN/A) process has been widely used in wastewater treatment owing to its notable advantages, including a low aeration rate and the non-requirement of an additional carbon source. In practical implementation, nitrite accumulation affects the nitrogen-removal efficiency and the amount of NO released during the PN/A process. By implementing wastewater reflux, the nitrite concentration can be decreased, thereby achieving a balance between the nitrogen-removal efficiency and NO release.
View Article and Find Full Text PDFJ Environ Manage
July 2023
School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
This study aimed to start up the completely autotrophic nitrogen removal over nitrite (CANON) process after adding partial nitration (PN) sludge to the ANAMMOX reactor, so as to help the rapid start-up and stable operation of the CANON process in practical engineering applications. There were three steps in the research: cultivating the PN sludge, building a reliable ANAMMMOX system, and finally starting and running the CANON process. The PN sludge was successfully cultivated in less than 45 days with around 90% nitrite accumulation rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!