In order to understand the inorganic carbon cycle of the groundwater-fed reservoir in karst area, Dalongdong Reservoir, which is located at Shanglin County, Guangxi Zhuang Autonomous Region, China, was investigated from 12th to 20th July, 2014. Concentration of dissolved inorganic carbon (DIC), delta13C of DIC (delta13C(DIC)), partial CO2 pressure (pCO2) and CO2 flux across water-air interface were studied by observation in situ and high-resolution diel monitoring. Results show that: (1) DIC concentration and water pCO2 increased from upstream area to downstream area [DIC(average)): from 122.88 to 172.02 mg x L(-1), pCO2(average) : from 637.91 x 10(-6) to 1399.97 x 10(-6)], while delta13C(DIC) decreased from upstream area to downstream area [delta13C(DIC(average): from -4.34% per hundred to -6.97% per hundred] in the reservoir. (2) CO2 efflux across water-air interface varied from 7.11 to 335.54 mg x (m2 x h)(-1) with mean of 125.03 mg x (m2 x h)(-1) in Dalongdong reservoir surface-layer waters, which was the source of atmospheric CO2. CO2 effluxes across water-air interface in upstream area [mean 131.73 mg x (m2 x h)(-1)] and downstream area [mean 170.25 mg x (m2 x h)(-1)] were higher than that in middle area [mean 116.05 mg x (m2 x h))(-1)] in the reservoir. (3) Water pCO2 and CO2 efflux across water-air interface showed similar characteristics of diel variations, which decreased in daylight and increased in night and showed a negative correlation with chlorophyll a (Chla). Possible reasons of research results are found as follows: (1) DIC concentration, water pCO2 and delta13C(DIC) are influenced by biomass of phytoplankton, turbidity, conductivity, the depth of water and transparency, while CO2 efflux across water-air interface is controlled by both of biomass of phytoplankton and wind speed. (2) Photosynthesis, respiration and vertical motion of phytoplankton possibly affect diel variations of DIC cycle in the groundwater-fed reservoir in karst area.
Download full-text PDF |
Source |
---|
J Colloid Interface Sci
January 2025
Department of Chemical and Petroleum Engineering, University of Calgary Calgary Alberta Canada. Electronic address:
Hypothesis: Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.
Experiments: In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil.
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Per- and polyfluoroalkyl substances (PFAS)─so-called "forever chemicals"─contaminate the drinking water of about 100 million people in the U.S. alone and are inefficiently removed by standard treatment techniques.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China. Electronic address:
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFeO/chitosan integrated melamine sponges (m-MoS/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS and NiFeO as photocatalysts, and melamine sponge as support material. The m-MoS/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface.
View Article and Find Full Text PDFLangmuir
December 2024
University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany.
Surfactants play an important role in modifying the properties of water-air interfaces. Here, we combine information from molecular dynamics simulations, surface tensiometry, and vibrational sum-frequency generation spectroscopy to study the interfacial behavior of photoswitchable arylazopyrazole (AAP) surfactants. This combination of the experimental techniques allows a direct relation between surface tension and surface concentration rather than just the bulk concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!