Chitosan is a versatile biological material that is very well known for its hemostatic properties. The purpose of this study was to test the hemostatic properties of a chitosan composite obtained from silkworm pupae and gelatin. This spongy porous material was cross-linked with tannins and then freeze-dried under vacuum to obtain composites containing chitosan and gelatin in different proportions. Results showed that the best blood-clotting index (BCI) was achieved in vitro by a chitosan/gelatin sponge (CG) ratio of 5/5 (W/W). Furthermore, CG had the best hemostatic effect in rabbit artery bleeding and liver model tests compared to the two components separately. The better hemostatic effect of CG may be due to its ability to absorb blood platelets easily and to the higher liquid adsorption ratio. However, no obvious differences were observed in thrombin generation with both aPTT and PT tests. Cell toxicity tests with L929 cells showed that CG caused no obvious cytotoxicity. In addition, subcutaneous transplantation of CG into rabbits resulted in almost complete degradation of CG after 6 weeks, together with rich vascular generation and proliferation in the transplanted region. Thus, CG can be considered an effective absorbable hemostatic material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.10.039 | DOI Listing |
Biotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFTransfus Med
January 2025
Research and Development, Finnish Red Cross Blood Service, Vantaa, Finland.
Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.
Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.
Biopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China. Electronic address:
The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!