Effect of heat on firefighters' work performance and physiology.

J Therm Biol

School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; Bushfire Co-Operative Research Centre, 340 Albert St, East Melbourne, VIC 3002, Australia; Centre for Physical Activity and Nutrition Research (C-PAN), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.

Published: October 2015

Wildland firefighters often perform their duties under both hot and mild ambient temperatures. However, the direct impact of different ambient temperatures on firefighters' work performance has not been quantified. This study compared firefighters' work performance and physiology during simulated wildland firefighting work in hot (HOT; 32°C, 43% RH) and temperate (CON; 19°C, 56% RH) conditions. Firefighters (n=38), matched and allocated to either the CON (n=18) or HOT (n=20) condition, performed simulated self-paced wildland fire suppression tasks (e.g., hose rolling/dragging, raking) in firefighting clothing for six hours, separated by dedicated rest breaks. Task repetitions were counted (and converted to distance or area). Core temperature (Tc), skin temperature (Tsk), and heart rate were recorded continuously throughout the protocol. Urine output was measured before and during the protocol, and urine specific gravity (USG) analysed, to estimate hydration. Ad libitum fluid intake was also recorded. There were no differences in overall work output between conditions for any physical task. Heart rate was higher in the HOT (55±2% HRmax) compared to the CON condition (51±2% HRmax) for the rest periods between bouts, and for the static hose hold task (69±3% HRmax versus 65±3% HRmax). Tc and Tsk were 0.3±0.1°C and 3.1±0.2°C higher in the HOT compared to the CON trial. Both pre- and within- shift fluid intake were increased two-fold in the heat, and participants in the heat recorded lower USG results than their CON counterparts. There was no difference between the CON and HOT conditions in terms of their work performance, and firefighters in both experimental groups increased their work output over the course of the simulated shift. Though significantly hotter, participants in the heat also managed to avoid excessive cardiovascular and thermal strain, likely aided by the frequent rest breaks in the protocol, and through doubling their fluid intake. Therefore, it can be concluded that wildland firefighters are able to safely and efficiently perform their duties under hot conditions, at least over six hours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2015.07.008DOI Listing

Publication Analysis

Top Keywords

work performance
16
firefighters' work
12
fluid intake
12
performance physiology
8
wildland firefighters
8
perform duties
8
hot
8
duties hot
8
ambient temperatures
8
rest breaks
8

Similar Publications

A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

A theoretical comparison of different third component content in ternary organic solar cells.

Phys Chem Chem Phys

January 2025

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.

Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.

View Article and Find Full Text PDF

Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!