Recent observations from our group seem to indicate that repeated stress-evoked dorsomedian hypothalamic nucleus (DMH) activation in rats can lead to persistent bradypnea. One possibility was that respiratory responses to peripheral chemoreceptor activation were reduced by DMH stimulation. In the present study, we therefore investigated the effect of minimal supra-threshold DMH stimulation on respiratory carotid chemoreflex responses. For this purpose, the chemoreflex was activated by potassium cyanide (KCN, 40μg/rat, i.v.) during electrical and chemical stimulation of the DMH. In both situations, changes in breathing frequency but not tidal volume responses to KCN administration were reduced. These findings suggest that low DMH neurotransmission negatively affects respiratory chemoreflex responses and may be involved in stress-induced bradypnea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2015.11.001 | DOI Listing |
Exp Physiol
January 2025
Department of Biology, Mount Royal University, Calgary, AB, Canada.
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide ( ), owing to its effect on cerebral blood flow, tissue , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations in can be detrimental to cerebral health.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2025
Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
The brain is highly innervated by sympathetic nerve fibers; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO) administration (+8 Torr)], independently and in combination. Twelve young and healthy participants (five females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.
Increasing evidence indicates an association between microbiome composition and respiratory homeostasis and disease, particularly disordered breathing, such as obstructive sleep apnea. Previous work showing respiratory disruption is limited by the methodology employed to disrupt, eliminate, or remove the microbiome by antibiotic depletion. Our work utilized germ-free mice born without a microbiome and described respiratory alterations.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
The homeostatic regulation of pulmonary ventilation, and ultimately arterial PCO, depends on interactions between respiratory chemoreflexes and arousal state. The ventilatory response to CO is triggered by neurons in the retrotrapezoid nucleus (RTN) that function as sensors of central pH, which can be identified in adulthood by the expression of Phox2b and neuromedin B. Here, we examine the dynamic response of genetically defined RTN neurons to hypercapnia and arousal state in freely behaving adult male and female mice using the calcium indicator jGCaMP7 and fiber photometry.
View Article and Find Full Text PDFSleep Med
December 2024
Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!