Introduction: Interleukin-6 (IL-6) is an important mediator of inflammation. In addition to cells involved in inflammation, sensory nociceptive neurons express the IL-6 signal-transducer glycoprotein 130 (gp130). These neurons are not only involved in pain generation but also produce neurogenic inflammation by release of neuropeptides such as calcitonin gene-related peptide (CGRP). Whether IL-6 activation of sensory neurons contributes to the induction of inflammation is unknown. This study explored whether the action of IL-6 on sensory neurons plays a role in the generation of neurogenic inflammation and arthritis induction.

Methods: In SNS-gp130(-/-) mice lacking gp130 selectively in sensory neurons and appropriate control littermates (SNS-gp130(flox/flox)), we induced antigen-induced arthritis (AIA), and assessed swelling, histopathological arthritis scores, pain scores, expression of CGRP in sensory neurons, serum concentrations of CGRP and cytokines, and the cytokine release from single cell suspensions from lymph nodes and spleens. In wild-type mice CGRP release was determined during development of AIA and, in cultured sensory neurons, upon IL-6 stimulation.

Results: Compared to SNS-gp130(flox/flox) mice SNS-gp130(-/-) mice showed significantly weaker initial swelling, reduced serum concentrations of CGRP, IL-6, and IL-2, no inflammation-evoked upregulation of CGRP in sensory neurons, but similar histopathological arthritis scores during AIA. During the initial swelling phase of AIA, CGRP was significantly increased in the serum, knee and spleen. In vitro, IL-6 augmented the release of CGRP from cultured sensory neurons. Upon antigen-specific restimulation lymphocytes from SNS-gp130(-/-) mice released more interleukin-17 and interferon-γ than lymphocytes from SNS-gp130(flox/flox) mice. In naive lymphocytes from SNS-gp130(flox/flox) and SNS-gp130(-/-) mice CGRP reduced the release of IL-2 (a cytokine which inhibits the release of interleukin-17 and interferon-γ).

Conclusions: IL-6 signaling in sensory neurons plays a role in the expression of arthritis. Selective deletion of gp130 signaling in sensory neurons reduces the swelling of the joint (most likely by reducing neurogenic inflammation) but increases some proinflammatory systemic cellular responses such as the release of interleukin-17 and interferon-γ from lymphocytes upon antigen-specific restimulation. Thus IL-6 signaling in sensory neurons is not only involved in pain generation but also in the coordination of the inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654804PMC
http://dx.doi.org/10.1186/s13075-015-0858-0DOI Listing

Publication Analysis

Top Keywords

sensory neurons
44
sns-gp130-/- mice
16
neurons
13
sensory
12
neurogenic inflammation
12
signaling sensory
12
il-6
9
cgrp
9
antigen-induced arthritis
8
neurons involved
8

Similar Publications

The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C.

View Article and Find Full Text PDF

Objective: The neuropeptide calcitonin gene-related peptide (CGRP) has been established to be a key signaling molecule in migraine, but little is known about the differences between the two isoforms: αCGRP and βCGRP. Previous studies have been hampered by their close similarity, making the development of specific antibodies nearly impossible. In this study we sought to test the hypothesis that αCGRP and βCGRP localize differently within the neurons of the mouse trigeminal ganglion (TG), using αCGRP knock out (KO) animals.

View Article and Find Full Text PDF

High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site, rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site.

View Article and Find Full Text PDF

African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated.

View Article and Find Full Text PDF

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!