Background: The immunogenicity and limited stability of conventional messenger RNA (mRNA) has traditionally restricted its potential therapeutic use. In 1992, the first clinical application of mRNA was reported as a potential protein-replacement therapy; however, subsequent investigations have not been made for almost two decades. Recent developments, including increased stability, controlling immunogenicity, as well as utilization of mRNA encoding zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas9, have implicated modified mRNA as a very promising option for cancer immunotherapy, vaccines, protein expression replacement, and genome editing. This review aims to offer a summary of our present understanding of and improvements in mRNA-based drug technologies, along with a focus on the role in therapeutic options for pediatric respiratory diseases and hemoglobinopathies.
Conclusions: This mini review summarizes the recent advances in modified mRNA-based therapy and its potential therapeutic effect in treating major pediatric diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654728 | PMC |
http://dx.doi.org/10.1186/s40348-015-0022-6 | DOI Listing |
RNA
December 2024
Instiute of Bioorganic Chemistry PAS
In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T (CAR T) celltherapies and protein replacement. mRNAis large, charged, and easily degraded by nucleases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain.
Fasciolosis is a neglected tropical disease caused by helminth parasites of the genus spp., including () and (), being a major zoonotic problem of human and animal health. Its control with antihelminthics is becoming ineffective due to the increase in parasite resistance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!